Chinese Quarterly Journal of Mathematics ›› 2003, Vol. 18 ›› Issue (4): 358-363.

Previous Articles     Next Articles

The Properties of Transitive Bipartite Tournaments 

  

  1. 1.Department of Applied Mathematics ,Petroleum  University ,Dongying 257061,China;2.Department of Information and Compute Sciences ,Guangxi Institute of Thchnology ,Liuzhou 545006,China
  • Received:2001-10-16 Online:2003-12-30 Published:2024-04-01
  • About author:TAN Shang-wang(1965-),male,native of Taian,Shandong,an associate professor of Petroleum University , M.S.D.,engages in graph theory .
  • Supported by:
     SupportedbytheGuangxiNationalScienceFoundation( 0 13 10 0 1);

Abstract: Let Γ ,n   denote all m  × n strongly connected bipartite tournaments and α( m ,n)the maxi- mal integer k such that every m  × n bipartite tournament contains at least a k  × k transitive bipartite subtournament.Let t( m ,n ,k ,l)= max{t( T m ,n  ,k ,l):T m ,n   ∈ Γ ,n },where t( T m ,n  ,k ,l)is the
number of k× l( k ≥2,l ≥2)transitive bipartite subtournaments contained in T m ,n   ∈ Γ ,n .We ob-
tain a method of graph theory for solving some integral programmings,investigate the upper bounds of α( m ,n)and obtain t( m ,n ,k ,l).

Key words: reverse arc, transitive, bipartite tournament, enumeration

CLC Number: