Chinese Quarterly Journal of Mathematics ›› 2002, Vol. 16 ›› Issue (2): 53-58.

Previous Articles     Next Articles

A Remark of M.Riesz Theorem 

  

  1.  河南师范大学数学与信息科学学院洛阳粮食学校团委 河南新乡453002河南洛阳471003
  • Received:2001-05-28 Online:2002-06-30 Published:2024-05-08
  • About author:TIAN Chang-an(1963-),male,native of Zhumadian,Henan,a lecturer of Henan Normal University,engages in functional analysis;YANG Chang-sen(1965-),male,native of Xinxiang,Henan,a professor of Henan Normal University,Ph.D.,engages in functional analysis.
  • Supported by:
    Supported by the Young Foundation of Henan Normal University(200001011)

Abstract: 设u(z)是单位圆内的实值调和函数 ,若 p_平均Mp(r ,u) =12π∫2π0|u(reiθ) |pdθ1 p <∞ ,则称u(z) ∈hp( 1 <p <∞ )。M .Riesz定理证明当 1 <p<∞ 时存在一个仅与 p有关的常数Ap 使得u ∈hp 有Mp(r ,v)≤ApMp(r ,u) ,其中v是u的共轭调和函数。当v( 0 ) =0时 ,且 1 <p≤ 2时 ,W .K .Hayman证明Ap 取为 pp- 11 p。本文首先指出该常数可用较小的数pp- 1 - 11 2 代替。另一方面 ,当 1 <p≤ 2 时 ,存在一个常数θ0 ∈ 2 - p2 p π ,π2 p 使得Mpp(r ,v)≤Im[f( 0 ) ]psin pπ2+tgp π2 pMpp(r ,u)对单位圆一切满足 -θ0 <argf(z) <π2 的解析函数 f(z)成立。 

Key words:  , 共轭调和函数, M.Riesz定理,  ,

CLC Number: