数学季刊 ›› 2023, Vol. 38 ›› Issue (1): 30-49.doi: 10.13371/j.cnki.chin.q.j.m.2023.01.003
收稿日期:
2023-04-11
出版日期:
2023-03-30
发布日期:
2023-03-20
通讯作者:
WANG Chong (1981-), female, native of Baoding, Hebei, associate professor of Cangzhou Normal
University, engages in topology.
E-mail:wangchong 618@163.com
作者简介:
REN Shi-quan (1987-), male, native of Jinan, Shandong, lecturer of Henan University, engages
in topology; WANG Chong (1981-), female, native of Baoding, Hebei, associate professor of Cangzhou Normal
University, engages in topology.
基金资助:
Received:
2023-04-11
Online:
2023-03-30
Published:
2023-03-20
Contact:
WANG Chong (1981-), female, native of Baoding, Hebei, associate professor of Cangzhou Normal
University, engages in topology.
E-mail:wangchong 618@163.com
About author:
REN Shi-quan (1987-), male, native of Jinan, Shandong, lecturer of Henan University, engages
in topology; WANG Chong (1981-), female, native of Baoding, Hebei, associate professor of Cangzhou Normal
University, engages in topology.
Supported by:
摘要: In 2020, Alexander Grigor’yan, Yong Lin and Shing-Tung Yau [6] introduced
the Reidemeister torsion and the analytic torsion for digraphs by means of the path
complex and the path homology theory. Based on the analytic torsion for digraphs
introduced in [6], we consider the notion of weighted analytic torsion for vertex-weighted
digraphs. For any non-vanishing real functions f and g on the vertex set, we consider the
vertex-weighted digraphs with the weights ( f,g ). We calculate the ( f,g )-weighted analytic
torsion by examples and prove that the ( f,g )-weighted analytic torsion only depend on
the ratio f/g . In particular, if the weight is of the diagonal form ( f,f ), then the weighted
analytic torsion equals to the usual (un-weighted) torsion.
中图分类号:
任世全, 王冲. 有向图的加权解析挠率[J]. 数学季刊, 2023, 38(1): 30-49.
REN Shi-quan, WANG Chong. Weighted Analytic Torsion for Weighted Digraphs[J]. Chinese Quarterly Journal of Mathematics, 2023, 38(1): 30-49.
[1] | 王俊杰, 余 洋, 胡建彪, 温 芃. 图包含 (a,b) 奇偶因子的谱半径条件[J]. 数学季刊, 2024, 39(4): 431-440. |
[2] | 张雯雯, 李平润. 非齐次Riemann-Hilbert边值问题的求解[J]. 数学季刊, 2024, 39(3): 262-269. |
[3] | 李然, 连铁艳. 有关广义 (h,m)-预不变凸函数的Ostrowski型不等式及其应用[J]. 数学季刊, 2024, 39(3): 270-287. |
[4] | 陈玉磊, 郭东威. 涉及调和数的组合恒等式[J]. 数学季刊, 2024, 39(3): 307-314. |
[5] | 江东月, 唐忠华, 房少梅. 具有奇异势和一般非线性的伪抛物方程解的局部存在性和爆破[J]. 数学季刊, 2024, 39(2): 111-127. |
[6] | 辛 欣, 谢博易, 刘科科. 基于半参数Copula学习的确定性独立筛选研究[J]. 数学季刊, 2024, 39(2): 144-160. |
[7] | 席维鸽, 许涛. 非正则赋权有向图 Aa 谱半径的上界[J]. 数学季刊, 2024, 39(2): 161-170. |
[8] | 许云龙, 钟裕民. Bouw-M¨oler曲面的Minkowski常数[J]. 数学季刊, 2024, 39(2): 185-199. |
[9] | 关庄丹, 梁梦翔. 在复二维仿射锥上的完备余齐性一Kähler度量[J]. 数学季刊, 2024, 39(2): 200-220. |
[10] | 唐忠华, 房少梅. 带分数阶Robin边界条件的时间-空间分数阶扩散方程的有限差分方法[J]. 数学季刊, 2024, 39(1): 18-30. |
[11] | 洪勇, 赵茜. 两类加权空间间的积分算子与离散算子的有界性及算子范数估计[J]. 数学季刊, 2024, 39(1): 59-67. |
[12] | 王川, 乔炎. Korteweg-de Vries方程的Legendre时空谱配置方法[J]. 数学季刊, 2023, 38(4): 392-400. |
[13] | 许娜. 一类次线性基尔霍夫方程基态解的存在性[J]. 数学季刊, 2023, 38(4): 410-414. |
[14] | 杨亦松. 曲面上的曲率在理论物理中的一些应用[J]. 数学季刊, 2023, 38(3): 221-253. |
[15] | 徐晓濛. Stokes 现象与量子群的表示[J]. 数学季刊, 2023, 38(3): 311-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||