数学季刊 ›› 2024, Vol. 39 ›› Issue (1): 18-30.doi: 10.13371/j.cnki.chin.q.j.m.2024.01.002
唐忠华, 房少梅
收稿日期:
2022-09-05
出版日期:
2024-03-30
发布日期:
2024-03-30
通讯作者:
FANG Shao-mei (1964-), female, native of Guangzhou, Guangdong, professor of South China Agricultural University, engages in partial differential equation.
E-mail:dz90@scau.edu.cn
作者简介:
TANG Zhong-hua (1996-), male, native of Wushan, Chongqing, graduate student of South China Agricultural University, engages in partial differential equation; FANG Shao-mei (1964-), female, native of Guangzhou, Guangdong, professor of South China Agricultural University, engages in partial differential equation.
基金资助:
TANG Zhong-hua, FANG Shao-mei
Received:
2022-09-05
Online:
2024-03-30
Published:
2024-03-30
Contact:
FANG Shao-mei (1964-), female, native of Guangzhou, Guangdong, professor of South China Agricultural University, engages in partial differential equation.
E-mail:dz90@scau.edu.cn
About author:
TANG Zhong-hua (1996-), male, native of Wushan, Chongqing, graduate student of South China Agricultural University, engages in partial differential equation; FANG Shao-mei (1964-), female, native of Guangzhou, Guangdong, professor of South China Agricultural University, engages in partial differential equation.
Supported by:
摘要: In this paper, an efficient numerical method is proposed to solve the Caputo-Riesz fractional diffusion equation with fractional Robin boundary conditions. We approximate the Riesz space fractional derivatives using the fractional central difference scheme with second-order accurate. A priori estimation of the solution of the numerical scheme is given, and the stability and convergence of the numerical scheme are analyzed. Finally, a numerical example is used to verify the accuracy and efficiency of the numerical method.
中图分类号:
唐忠华, 房少梅. 带分数阶Robin边界条件的时间-空间分数阶扩散方程的有限差分方法[J]. 数学季刊, 2024, 39(1): 18-30.
TANG Zhong-hua, FANG Shao-mei. Implicit Finite Difference Method for Time-Space Caputo-Riesz Fractional Diffusion Equation with Fractional Robin Boundary Conditions[J]. Chinese Quarterly Journal of Mathematics, 2024, 39(1): 18-30.
[1] | 辛 欣, 谢博易, 刘科科. 基于半参数Copula学习的确定性独立筛选研究[J]. 数学季刊, 2024, 39(2): 144-160. |
[2] | 席维鸽, 许涛. 非正则赋权有向图 Aa 谱半径的上界[J]. 数学季刊, 2024, 39(2): 161-170. |
[3] | 许云龙, 钟裕民. Bouw-M¨oler曲面的Minkowski常数[J]. 数学季刊, 2024, 39(2): 185-199. |
[4] | 关庄丹, 梁梦翔. 在复二维仿射锥上的完备余齐性一Kähler度量[J]. 数学季刊, 2024, 39(2): 200-220. |
[5] | 江东月, 唐忠华, 房少梅. 具有奇异势和一般非线性的伪抛物方程解的局部存在性和爆破[J]. 数学季刊, 2024, 39(2): 111-127. |
[6] | 洪勇, 赵茜. 两类加权空间间的积分算子与离散算子的有界性及算子范数估计[J]. 数学季刊, 2024, 39(1): 59-67. |
[7] | 王川, 乔炎. Korteweg-de Vries方程的Legendre时空谱配置方法[J]. 数学季刊, 2023, 38(4): 392-400. |
[8] | 许娜. 一类次线性基尔霍夫方程基态解的存在性[J]. 数学季刊, 2023, 38(4): 410-414. |
[9] | 杨亦松. 曲面上的曲率在理论物理中的一些应用[J]. 数学季刊, 2023, 38(3): 221-253. |
[10] | 徐晓濛. Stokes 现象与量子群的表示[J]. 数学季刊, 2023, 38(3): 311-330. |
[11] | 黄述亮. 带有对合的素环的微分恒等式[J]. 数学季刊, 2023, 38(2): 134-144. |
[12] | 马腾. 变指标中心Morrey空间上带Dini核的多线性C-Z算子[J]. 数学季刊, 2023, 38(2): 184-195. |
[13] | 梁艳霞. 带位势的基尔霍夫方程规范解的存在性[J]. 数学季刊, 2023, 38(2): 196-209. |
[14] | 白宏芳. 一类具有时滞的生态流行病模型的稳定性与 Hopf 分支[J]. 数学季刊, 2023, 38(2): 157-183. |
[15] | 杜玲珑, 韩晓岳, 于佳平, 周昕昀. 具有势场的随机Cucker-Smale系统[J]. 数学季刊, 0, (): 111-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||