数学季刊 ›› 2024, Vol. 39 ›› Issue (3): 270-287.doi: 10.13371/j.cnki.chin.q.j.m.2024.03.005
收稿日期:
2023-03-06
出版日期:
2024-09-30
发布日期:
2024-09-30
通讯作者:
LIAN Tie-yan (1978-), female, native of Weinan, Shaanxi, associate professor of Shaanxi University of Science & Technology, M.S.D., engages in fuzzy integral and its applications.
E-mail:liantieyan@sust.edu.cn
作者简介:
LI Ran (1997-), female, native of Kaifeng, Henan, graduate student of Shaanxi University of Science & Technology, engages in fuzzy integral and its applications; LIAN Tie-yan (1978-), female, native of Weinan, Shaanxi, associate professor of Shaanxi University of Science & Technology, M.S.D., engages in fuzzy integral and its applications.
基金资助:
Received:
2023-03-06
Online:
2024-09-30
Published:
2024-09-30
Contact:
LIAN Tie-yan (1978-), female, native of Weinan, Shaanxi, associate professor of Shaanxi University of Science & Technology, M.S.D., engages in fuzzy integral and its applications.
E-mail:liantieyan@sust.edu.cn
About author:
LI Ran (1997-), female, native of Kaifeng, Henan, graduate student of Shaanxi University of Science & Technology, engages in fuzzy integral and its applications; LIAN Tie-yan (1978-), female, native of Weinan, Shaanxi, associate professor of Shaanxi University of Science & Technology, M.S.D., engages in fuzzy integral and its applications.
Supported by:
摘要: A new concept generalized (h,m)−preinvex function on Yang’s fractal sets is proposed. Some Ostrowski’s type inequalities with two parameters for generalized (h,m)−preinvex function are established, where three local fractional inequalities involving generalized midpoint type, trapezoid type and Simpson type are derived as consequences. Furthermore, as some applications, special means inequalities and numerical quadratures for local fractional integrals are discussed.
中图分类号:
李然, 连铁艳. 有关广义 (h,m)-预不变凸函数的Ostrowski型不等式及其应用[J]. 数学季刊, 2024, 39(3): 270-287.
LI Ran, LIAN Tie-yan. Ostrowski’s Type Inequalities for Generalized (h,m)−Preinvex Functions with Its Applications[J]. Chinese Quarterly Journal of Mathematics, 2024, 39(3): 270-287.
[1] | 张雯雯, 李平润. 非齐次Riemann-Hilbert边值问题的求解[J]. 数学季刊, 2024, 39(3): 262-269. |
[2] | 陈玉磊, 郭东威. 涉及调和数的组合恒等式[J]. 数学季刊, 2024, 39(3): 307-314. |
[3] | 江东月, 唐忠华, 房少梅. 具有奇异势和一般非线性的伪抛物方程解的局部存在性和爆破[J]. 数学季刊, 2024, 39(2): 111-127. |
[4] | 辛 欣, 谢博易, 刘科科. 基于半参数Copula学习的确定性独立筛选研究[J]. 数学季刊, 2024, 39(2): 144-160. |
[5] | 席维鸽, 许涛. 非正则赋权有向图 Aa 谱半径的上界[J]. 数学季刊, 2024, 39(2): 161-170. |
[6] | 许云龙, 钟裕民. Bouw-M¨oler曲面的Minkowski常数[J]. 数学季刊, 2024, 39(2): 185-199. |
[7] | 关庄丹, 梁梦翔. 在复二维仿射锥上的完备余齐性一Kähler度量[J]. 数学季刊, 2024, 39(2): 200-220. |
[8] | 唐忠华, 房少梅. 带分数阶Robin边界条件的时间-空间分数阶扩散方程的有限差分方法[J]. 数学季刊, 2024, 39(1): 18-30. |
[9] | 洪勇, 赵茜. 两类加权空间间的积分算子与离散算子的有界性及算子范数估计[J]. 数学季刊, 2024, 39(1): 59-67. |
[10] | 王川, 乔炎. Korteweg-de Vries方程的Legendre时空谱配置方法[J]. 数学季刊, 2023, 38(4): 392-400. |
[11] | 许娜. 一类次线性基尔霍夫方程基态解的存在性[J]. 数学季刊, 2023, 38(4): 410-414. |
[12] | 杨亦松. 曲面上的曲率在理论物理中的一些应用[J]. 数学季刊, 2023, 38(3): 221-253. |
[13] | 徐晓濛. Stokes 现象与量子群的表示[J]. 数学季刊, 2023, 38(3): 311-330. |
[14] | 黄述亮. 带有对合的素环的微分恒等式[J]. 数学季刊, 2023, 38(2): 134-144. |
[15] | 马腾. 变指标中心Morrey空间上带Dini核的多线性C-Z算子[J]. 数学季刊, 2023, 38(2): 184-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||