数学季刊 ›› 2023, Vol. 38 ›› Issue (4): 410-414.doi: 10.13371/j.cnki.chin.q.j.m.2023.04.008
摘要: In this paper, we study a class of sublinear Kirchhoff equations:
- (a+ b \int_{\mathbb{R}^N} |\nabla u|^2dx)\Delta u+ V(x)u =f(x,u) \ \ &\text{in}\ \mathbb{R}^N,
where a,b>0, V :RN→R can be sign-changing, and f :RN×R→R. Under some conditions on V and f, we verify that the
problem possesses at least one energy solution by using
variational method.
中图分类号: