数学季刊 ›› 2020, Vol. 35 ›› Issue (4): 344-353.doi: 10.13371/j.cnki.chin.q.j.m.2020.04.002
收稿日期:
2020-09-24
出版日期:
2020-12-30
发布日期:
2021-01-06
作者简介:
WU Rui-min(1985-), female, native of Lanzhou, Gansu, Longqiao College of Lanzhou University
of Finance and Economics, engages in harmonic analysis; WANG Song-bai(1986-), male, native of Changsha, Hunan, professor of Chongqing Three Gorges University, Ph.D, engages in harmonic analysis.
基金资助:
Received:
2020-09-24
Online:
2020-12-30
Published:
2021-01-06
About author:
WU Rui-min(1985-), female, native of Lanzhou, Gansu, Longqiao College of Lanzhou University
of Finance and Economics, engages in harmonic analysis; WANG Song-bai(1986-), male, native of Changsha, Hunan, professor of Chongqing Three Gorges University, Ph.D, engages in harmonic analysis.
Supported by:
摘要:
Let ϕ be a generalized Orlicz function satisfying (A0), (A1), (A2), (aInc) and (aDec). We prove that the mapping
f →f #:=supB 1/\int|B||f(x)-fB|dx is continuous on Lϕ(·)(Rn) by extrapolation. Based on this result we generalize Korn’s inequality to the setting of generalized Orlicz spaces, i.e., ||\triangledown f||L^{ϕ(·)}(Ω) \lesssim||DF|||L^{ϕ}(Ω) . Using the Calder´on–Zygmund theory on generalized Orlicz spaces, we obtain that the divergence equation divu=f has a solution u∈(W01,ϕ(·)(Ω))n such that ||\triangledown u||L^{ϕ(·)}(Ω) \lesssim ||f||L^{ϕ}(Ω).
中图分类号:
吴芮民, 王松柏. 广义的Orlicz空间上的Korn不等式与散度方程[J]. 数学季刊, 2020, 35(4): 344-353.
WU Rui-min , WANG Song-bai. Korn’s Inequality and Divergence Equations on Generalize Orlicz Spaces[J]. Chinese Quarterly Journal of Mathematics, 2020, 35(4): 344-353.
[1] | 王俊杰, 余 洋, 胡建彪, 温 芃. 图包含 (a,b) 奇偶因子的谱半径条件[J]. 数学季刊, 2024, 39(4): 431-440. |
[2] | 张雯雯, 李平润. 非齐次Riemann-Hilbert边值问题的求解[J]. 数学季刊, 2024, 39(3): 262-269. |
[3] | 李然, 连铁艳. 有关广义 (h,m)-预不变凸函数的Ostrowski型不等式及其应用[J]. 数学季刊, 2024, 39(3): 270-287. |
[4] | 陈玉磊, 郭东威. 涉及调和数的组合恒等式[J]. 数学季刊, 2024, 39(3): 307-314. |
[5] | 江东月, 唐忠华, 房少梅. 具有奇异势和一般非线性的伪抛物方程解的局部存在性和爆破[J]. 数学季刊, 2024, 39(2): 111-127. |
[6] | 辛 欣, 谢博易, 刘科科. 基于半参数Copula学习的确定性独立筛选研究[J]. 数学季刊, 2024, 39(2): 144-160. |
[7] | 席维鸽, 许涛. 非正则赋权有向图 Aa 谱半径的上界[J]. 数学季刊, 2024, 39(2): 161-170. |
[8] | 许云龙, 钟裕民. Bouw-M¨oler曲面的Minkowski常数[J]. 数学季刊, 2024, 39(2): 185-199. |
[9] | 关庄丹, 梁梦翔. 在复二维仿射锥上的完备余齐性一Kähler度量[J]. 数学季刊, 2024, 39(2): 200-220. |
[10] | 唐忠华, 房少梅. 带分数阶Robin边界条件的时间-空间分数阶扩散方程的有限差分方法[J]. 数学季刊, 2024, 39(1): 18-30. |
[11] | 洪勇, 赵茜. 两类加权空间间的积分算子与离散算子的有界性及算子范数估计[J]. 数学季刊, 2024, 39(1): 59-67. |
[12] | 王川, 乔炎. Korteweg-de Vries方程的Legendre时空谱配置方法[J]. 数学季刊, 2023, 38(4): 392-400. |
[13] | 许娜. 一类次线性基尔霍夫方程基态解的存在性[J]. 数学季刊, 2023, 38(4): 410-414. |
[14] | 杨亦松. 曲面上的曲率在理论物理中的一些应用[J]. 数学季刊, 2023, 38(3): 221-253. |
[15] | 徐晓濛. Stokes 现象与量子群的表示[J]. 数学季刊, 2023, 38(3): 311-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||