Chinese Quarterly Journal of Mathematics ›› 2009, Vol. 24 ›› Issue (3): 370-377.

Previous Articles     Next Articles

A Finite Volume Backward Euler Difference Method for Nonlinear Parabolic Integral-differential Equation 

  

  1. 1. College of Mathematics and Information Science, Henan University2. Institute of Applied Mathematics, Henan University3. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences4. Mechanical Engineering College, Tianjin University5. Department of Mathematics, Tianjin University
  • Received:2008-10-12 Online:2009-09-30 Published:2023-06-27
  • About author: WANG Bo(1976- ), female, native of Liaocheng, Shandong, an associate professor of Henan University, Ph.D., engages in the numerical solution of partial differential equations.
  • Supported by:
    Supported by the NSF of China(40805020; 90511009; 10702050; 60704015; 60877001);

Abstract: The Finite volume backward Euler difference method is established to discuss two-dimensional parabolic integro-differential equations. These results are new for finite volume element methods for parabolic integro-differential equations.

Key words: finite volume element, integro-differential equations, initial boundary problem;
optimal error estimates

CLC Number: