Chinese Quarterly Journal of Mathematics ›› 2008, Vol. 23 ›› Issue (1): 61-66.

Previous Articles     Next Articles

An Existence Theorem of Solution for a Singular Third-order Two-point Boundary Value Problem

  


  1. Department of Applied Mathematics Nanjing University of Finance and Economics,,Nanjing 210003,China
  • Received:2005-06-08 Online:2008-03-30 Published:2023-10-13
  • About author:YAO Qing-liu(1946-),male, native of Shanghai, a professor of Nanjing University of Finance and Economics, engages in applied differential equation.

Abstract: By constructing suitable Banach space,an existence theorem is established under a condition of linear growth for the third-order boundary value problem u′′′(t)+f(t,u(t),u′(t),u″(t))=0,0<t<1,u(O)=u′(0)=u′(1)=0, where the nonlinear term contains first and second derivatives of unknown function.In this theorem the nonlinear term f(t,u,v,w) may be singular at t=0 and t=1.The main ingredient is Leray-Schauder nonlinear alternative.

Key words:  singular ordinary differential equation, boundary value problem, existence theorem, nonlinear alternative

CLC Number: