Chinese Quarterly Journal of Mathematics ›› 2006, Vol. 21 ›› Issue (1): 115-123.
Previous Articles Next Articles
Received:
Online:
Published:
About author:
Supported by:
Abstract: In this paper, we consider a class of bounded Reinhardt domains Dα(m, n1,…,nm). The Bergman kernel function K(z,z), the Bergman metric matrix T(z,z), the Cauchy-Szego kernel function S(z,ζ) are obtained. Then we prove that the formal Poisson kernel function is not a Poisson kernel function. At last, we prove that Dα is a quasiconvex domain and Dα is a stronger quasiconvex domain if and only if Dα is a hypersphere.
Key words: bounded Reinhardt , domain;Cauchy-Szego , kernel
CLC Number:
 
O174.5
LI Xian. Function Theory of a Class of Bounded Reinhardt Domains[J]. Chinese Quarterly Journal of Mathematics, 2006, 21(1): 115-123.
/ Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://sxjk.magtechjournal.com/EN/
https://sxjk.magtechjournal.com/EN/Y2006/V21/I1/115