Chinese Quarterly Journal of Mathematics ›› 2005, Vol. 20 ›› Issue (2): 200-205.
Previous Articles Next Articles
Received:
Online:
Published:
About author:
Supported by:
Abstract: This paper discusses the first eigenvalue on a compact Riemann manifold with the negative lower bound Ricci curvature. Let M be a compact Riemann manifold with the Ricci curvature≥-R, R=const.≥0 and d is the diameter of M. Our main result is that the first eigenvalue λ1 of M satisfies λ1≥π2/d2-0.518.R.
Key words: Ricci , curvature;first , eigenvalue
CLC Number:
 
O186.1
ZHAO Di, YANG Jian-an. The First Eigenvalue of a Compact Manifold[J]. Chinese Quarterly Journal of Mathematics, 2005, 20(2): 200-205.
/ Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://sxjk.magtechjournal.com/EN/
https://sxjk.magtechjournal.com/EN/Y2005/V20/I2/200