Chinese Quarterly Journal of Mathematics ›› 2015, Vol. 30 ›› Issue (4): 596-609.doi: 10.13371/j.cnki.chin.q.j.m.2015.04.013

Previous Articles     Next Articles

On the Analog of Shephard Problem for Lp-polar Projection Bodies

  

  1. College of Mathematics and Statistics, Hexi University
  • Received:2014-03-21 Online:2015-12-30 Published:2020-11-19
  • About author:MA Tong-yi(1959-), male, Huining, Gansu, a professor of Hexi University, engages in convex geometric analysis and distance geometry study.
  • Supported by:
    Supported by the National Natural Science Foundation of China(11561020,11371224); Supported by the Science and Technology Plan of the Gansu Province(145RJZG227);

Abstract: For p > 0, Lutwak, Yang and Zhang introduced the concept of Lp-polar projection body Γ-pK of a convex body K in Rn. Let p ≥ 1 and K, L \subset Rnbe two origin-symmetric convex bodies, we consider the question of whether Γ-p K  \subset  Γ-p L implies \Omegap(L) ≤ \Omegap(K),where \Omegap(K) denotes the Lp-affine surface area of K and K = Voln(K)-1/p K. We prove a necessary and sufficient condition of an analog of the Shephard problem for the Lp-polar projection bodies. 

Key words: convex body, Lp-polar projection body, Lp-affine surface area, Fourier transform, Shephard problem

CLC Number: