数学季刊 ›› 2023, Vol. 38 ›› Issue (1): 97-110.doi: 10.13371/j.cnki.chin.q.j.m.2023.01.007
• • 上一篇
收稿日期:
2021-10-19
出版日期:
2023-03-30
发布日期:
2023-03-20
通讯作者:
LONG Qin-yi (1998-), female, native of Jingmen, Hubei, graduate student of Yangtze University,
engages in probability and statistics
E-mail:longqy98@163.com
作者简介:
LONG Qin-yi (1998-), female, native of Jingmen, Hubei, graduate student of Yangtze University,
engages in probability and statistics; XU Li-ping (1980-), female, native of Weifang, Shandong, associate
professor of Yangtze University, engages in probability and statistics.
基金资助:
Received:
2021-10-19
Online:
2023-03-30
Published:
2023-03-20
Contact:
LONG Qin-yi (1998-), female, native of Jingmen, Hubei, graduate student of Yangtze University,
engages in probability and statistics
E-mail:longqy98@163.com
About author:
LONG Qin-yi (1998-), female, native of Jingmen, Hubei, graduate student of Yangtze University,
engages in probability and statistics; XU Li-ping (1980-), female, native of Weifang, Shandong, associate
professor of Yangtze University, engages in probability and statistics.
Supported by:
摘要: Firstly, the maximum likelihood estimate and asymptotic confidence interval
of the unkown parameter for the Topp-Leone distribution are obtained under Type-I left
censored samples, furthermore, the asymptotic confidence interval of reliability function
is obtained based on monotonicity. Secondly, under different loss functions, the Bayesian
estimates of the unkown parameter and reliability function are obtained, and the expected
mean square errors of Bayesian estimates are calculated. Monte-Carlo method is used to
calculate the mean values and relative errors of the estimates. Finally, an example of life
data is analyzed by using the statistical method in this paper.
中图分类号:
龙沁怡, 徐丽平. I型左删失下Topp–Leone分布的参数及可靠度函数的估计[J]. 数学季刊, 2023, 38(1): 97-110.
LONG Qin-yi, XU Li-ping. Estimates of the Parameter and Reliability Function for the Topp-Leone Distribution under Type-I Left Censoring[J]. Chinese Quarterly Journal of Mathematics, 2023, 38(1): 97-110.
[1] | 王俊杰, 余 洋, 胡建彪, 温 芃. 图包含 (a,b) 奇偶因子的谱半径条件[J]. 数学季刊, 2024, 39(4): 431-440. |
[2] | 张雯雯, 李平润. 非齐次Riemann-Hilbert边值问题的求解[J]. 数学季刊, 2024, 39(3): 262-269. |
[3] | 李然, 连铁艳. 有关广义 (h,m)-预不变凸函数的Ostrowski型不等式及其应用[J]. 数学季刊, 2024, 39(3): 270-287. |
[4] | 陈玉磊, 郭东威. 涉及调和数的组合恒等式[J]. 数学季刊, 2024, 39(3): 307-314. |
[5] | 江东月, 唐忠华, 房少梅. 具有奇异势和一般非线性的伪抛物方程解的局部存在性和爆破[J]. 数学季刊, 2024, 39(2): 111-127. |
[6] | 辛 欣, 谢博易, 刘科科. 基于半参数Copula学习的确定性独立筛选研究[J]. 数学季刊, 2024, 39(2): 144-160. |
[7] | 席维鸽, 许涛. 非正则赋权有向图 Aa 谱半径的上界[J]. 数学季刊, 2024, 39(2): 161-170. |
[8] | 许云龙, 钟裕民. Bouw-M¨oler曲面的Minkowski常数[J]. 数学季刊, 2024, 39(2): 185-199. |
[9] | 关庄丹, 梁梦翔. 在复二维仿射锥上的完备余齐性一Kähler度量[J]. 数学季刊, 2024, 39(2): 200-220. |
[10] | 唐忠华, 房少梅. 带分数阶Robin边界条件的时间-空间分数阶扩散方程的有限差分方法[J]. 数学季刊, 2024, 39(1): 18-30. |
[11] | 洪勇, 赵茜. 两类加权空间间的积分算子与离散算子的有界性及算子范数估计[J]. 数学季刊, 2024, 39(1): 59-67. |
[12] | 王川, 乔炎. Korteweg-de Vries方程的Legendre时空谱配置方法[J]. 数学季刊, 2023, 38(4): 392-400. |
[13] | 许娜. 一类次线性基尔霍夫方程基态解的存在性[J]. 数学季刊, 2023, 38(4): 410-414. |
[14] | 杨亦松. 曲面上的曲率在理论物理中的一些应用[J]. 数学季刊, 2023, 38(3): 221-253. |
[15] | 徐晓濛. Stokes 现象与量子群的表示[J]. 数学季刊, 2023, 38(3): 311-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||