数学季刊 ›› 2021, Vol. 36 ›› Issue (4): 419-429.doi: 10.13371/j.cnki.chin.q.j.m.2021.04.009
收稿日期:
2021-08-25
出版日期:
2021-12-30
发布日期:
2021-12-30
通讯作者:
YUAN Yong-xin (1966-), male, native of Zhenjiang, Jiangsu, professor of Hubei Normal University, engages in computational mathematics.
作者简介:
LIU Li-na (1992-), female, native of Fuyang, Anhui, postgraduate student of Hubei Normal
University, engages in basic mathematics; YUAN Yu-ying (1993-), female, native of Zhenjiang, Jiangsu, librarian of Library of Hubei Normal University, engages in reference service for readers; YUAN Yong-xin (1966-), male, native of Zhenjiang, Jiangsu, professor of Hubei Normal University, engages in computational mathematics.
Received:
2021-08-25
Online:
2021-12-30
Published:
2021-12-30
Contact:
YUAN Yong-xin (1966-), male, native of Zhenjiang, Jiangsu, professor of Hubei Normal University, engages in computational mathematics.
About author:
LIU Li-na (1992-), female, native of Fuyang, Anhui, postgraduate student of Hubei Normal
University, engages in basic mathematics; YUAN Yu-ying (1993-), female, native of Zhenjiang, Jiangsu, librarian of Library of Hubei Normal University, engages in reference service for readers; YUAN Yong-xin (1966-), male, native of Zhenjiang, Jiangsu, professor of Hubei Normal University, engages in computational mathematics.
摘要: A novel numerical method is presented to update mass and stiffness matrices simultaneously with measured vibration data by means of the combined acceleration and displacement output feedback. By the method, the required displacement and acceleration output feedback gain matrices are determined, and thus the optimal approximation mass matrix and stiffness matrix which satisfy the required orthogonality relation and eigenvalue equation are found. The proposed method is computationally efficient and the updated mass and stiffness matrices are also symmetric and have the compact expressions. The numerical example shows that the proposed method is reliable and attractive.
中图分类号:
刘丽娜, 袁钰莹, 袁永新. 利用特征结构配置方法修正质量和刚度矩阵[J]. 数学季刊, 2021, 36(4): 419-429.
LIU Li-na, YUAN Yu-ying, YUAN Yong-xin . Updating Mass and Stiffness Matrices Using Eigenstructure Assignment Methods[J]. Chinese Quarterly Journal of Mathematics, 2021, 36(4): 419-429.
[1] | 王俊杰, 余 洋, 胡建彪, 温 芃. 图包含 (a,b) 奇偶因子的谱半径条件[J]. 数学季刊, 2024, 39(4): 431-440. |
[2] | 张雯雯, 李平润. 非齐次Riemann-Hilbert边值问题的求解[J]. 数学季刊, 2024, 39(3): 262-269. |
[3] | 李然, 连铁艳. 有关广义 (h,m)-预不变凸函数的Ostrowski型不等式及其应用[J]. 数学季刊, 2024, 39(3): 270-287. |
[4] | 陈玉磊, 郭东威. 涉及调和数的组合恒等式[J]. 数学季刊, 2024, 39(3): 307-314. |
[5] | 江东月, 唐忠华, 房少梅. 具有奇异势和一般非线性的伪抛物方程解的局部存在性和爆破[J]. 数学季刊, 2024, 39(2): 111-127. |
[6] | 辛 欣, 谢博易, 刘科科. 基于半参数Copula学习的确定性独立筛选研究[J]. 数学季刊, 2024, 39(2): 144-160. |
[7] | 席维鸽, 许涛. 非正则赋权有向图 Aa 谱半径的上界[J]. 数学季刊, 2024, 39(2): 161-170. |
[8] | 许云龙, 钟裕民. Bouw-M¨oler曲面的Minkowski常数[J]. 数学季刊, 2024, 39(2): 185-199. |
[9] | 关庄丹, 梁梦翔. 在复二维仿射锥上的完备余齐性一Kähler度量[J]. 数学季刊, 2024, 39(2): 200-220. |
[10] | 唐忠华, 房少梅. 带分数阶Robin边界条件的时间-空间分数阶扩散方程的有限差分方法[J]. 数学季刊, 2024, 39(1): 18-30. |
[11] | 洪勇, 赵茜. 两类加权空间间的积分算子与离散算子的有界性及算子范数估计[J]. 数学季刊, 2024, 39(1): 59-67. |
[12] | 王川, 乔炎. Korteweg-de Vries方程的Legendre时空谱配置方法[J]. 数学季刊, 2023, 38(4): 392-400. |
[13] | 许娜. 一类次线性基尔霍夫方程基态解的存在性[J]. 数学季刊, 2023, 38(4): 410-414. |
[14] | 杨亦松. 曲面上的曲率在理论物理中的一些应用[J]. 数学季刊, 2023, 38(3): 221-253. |
[15] | 徐晓濛. Stokes 现象与量子群的表示[J]. 数学季刊, 2023, 38(3): 311-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||