Chinese Quarterly Journal of Mathematics ›› 2008, Vol. 23 ›› Issue (1): 36-44.

Previous Articles     Next Articles

Weighted Bergman Spaces on Bounded Symmetric Domains 

  

  1. 1. Department of Mathematics,University of Science and Technology of China2. Department of Mathematics,Huzhou Teacher's College 
  • Received:2007-06-10 Online:2008-03-30 Published:2023-10-13
  • About author: WANG Xiong-liang(1971-), mail, native of Youxian, Hunan, Ph.D., engages in SCV; LIU Tai-shun(1957-), mail, native of Huoshan, Anhui, a professor of Huzhou Teacher's College, engages in SCV.
  • Supported by:
    Supported  by  the  NNSF  of  China(10571164);  Supported  by  the  SRFDP  of  Higher Education(20050358052)

Abstract: On bounded symmetric domainΩof Cn, we investigate the properties of functions in weighted Bergman spaces Ap(Ω,dvs) for 0<p≤+∞ and -1<s<+∞. Based on the estimate of Bergman kernel, we obtain some characterizations of functions in Ap(Ω,dvs) in terms of a class of linear operators Dα,β. Making use of these characterizations, we ex- tend Ap(Ω,dvs) to the weighted Berg-man spaces Apα,β(Ω,dvs) in a very natural way for 1≤p≤+∞and any real number s, that is, -∞<s<+∞.This unified treatment covers some classical Bergman spaces, Besov spaces and Bloch spaces. Meanwhile, the boundedness of Bergman projection operators on Apα,β(Ω,dvs) and the dual of Apα,β(Ω,dvs) are given. 

Key words:  bounded symmetric domains, linear operator Dα,β weighted Bergman space Ap(Ω,dvs), weighted Bergman space Apα,β(Ω,dvs), duality

CLC Number: