Chinese Quarterly Journal of Mathematics ›› 2008, Vol. 23 ›› Issue (4): 582-588.

Previous Articles     Next Articles

Some Results on the Cardinalities of Row Space of Boolean Matrices 

  

  1. Mathematics and Computational Science School,Zhanjiang Normal University,Zhanjiang 524048,China
  • Received:2006-11-10 Online:2008-12-30 Published:2023-09-15
  • About author:ZHONG Li-ping(1963-), female, native of Meizhou, Guangdong, an associate professor of Zhan- jiang Normal University, M.S.D., engages in algebra theory.
  • Supported by:
     Supported by the Guangdong Provincial Natural Science Foundation of China(06029035);

Abstract: Let Bn be the set of all n×n Boolean Matrices;R(A) denote the row space of A∈Bn,|R(A)| denote the cardinality of R(A),m,n,k,l,t,i,γi be positive integers,Si,λi be non negative integers.In this paper,we prove the following two results: (1)Let n≥13,n-3≥k > Sl,Si+1> Si,i = 1,2,…,l-1.if k+l≤n,then for any m=2k+2(Sl) + 2(Sl-1)+…+ 2(S1),there exists A∈Bn,such that |R(A)|= m. (2)Let n≥13,n-3≥k>Sn-k-1> Sn-k-2>…>S1tt-1>…>λ1,2≤t≤n-k.If exist γi(k+1≤γi≤n-1,i=1,2,…,t-1)γii+1 and λtt-1≤k-S(n-γ1),λt-it-i-1≤S(n-γi)-S(n-γi+1),i=1,2,…,t-2,then for any m=2k+2(SN-K-1)+2(Sn-k-2)+…+2(S1)+2(λt)+2(λt-1)+…+2(λ1),there exists A∈Bn,as such that |R(A)|=m. 

Key words:  Boolean ,  matrix; ,  row ,  space; ,  cardinality ,  of , a ,  row ,  space

CLC Number: