数学季刊 ›› 2023, Vol. 38 ›› Issue (3): 221-253.doi: 10.13371/j.cnki.chin.q.j.m.2023.03.001
• • 下一篇
收稿日期:
2023-08-25
出版日期:
2023-09-30
发布日期:
2023-09-30
通讯作者:
YANG Yi-song (1958-), male, born in Beijing, professor of New York University, Ph.D., interests in partial differential equations and mathematical physics.
E-mail:yisongyang@gmail.com
作者简介:
YANG Yi-song (1958-), male, born in Beijing, professor of New York University, Ph.D., interests in partial differential equations and mathematical physics.
基金资助:
Received:
2023-08-25
Online:
2023-09-30
Published:
2023-09-30
Contact:
YANG Yi-song (1958-), male, born in Beijing, professor of New York University, Ph.D., interests in partial differential equations and mathematical physics.
E-mail:yisongyang@gmail.com
About author:
YANG Yi-song (1958-), male, born in Beijing, professor of New York University, Ph.D., interests in partial differential equations and mathematical physics.
Supported by:
摘要: In this survey article, we present two applications of surface curvatures in theoretical physics. The first application arises from biophysics in the study of the shape of cell vesicles involving the minimization of a mean curvature type energy called the Helfrich bending energy. In this formalism, the equilibrium shape of a cell vesicle may present itself in a rich variety of geometric and topological characteristics. We first show that there is an obstruction, arising from the spontaneous curvature, to the existence of a minimizer of the Helfrich energy over the set of embedded ring tori. We then propose a scale-invariant anisotropic bending energy, which extends the Canham energy, and show that it possesses a unique toroidal energy minimizer, up to rescaling, in all parameter regime. Furthermore, we establish some genus-dependent topological lower and upper bounds, which are known to be lacking with the Helfrich energy, for the proposed energy. We also present the shape equation in our context, which extends the Helfrich shape equation. The second application arises from astrophysics in the search for a mechanism for matter accretion in the early universe in the context of cosmic strings. In this formalism, gravitation may simply be stored over a two-surface so that the Einstein tensor is given in terms of the Gauss curvature of the surface which relates itself directly to the Hamiltonian energy density of the matter sector. This setting provides a lucid exhibition of the interplay of the underlying geometry, matter energy, and topological characterization of the system. In both areas of applications, we encounter highly challenging nonlinear partial differential equation problems. We demonstrate that studies on these equations help us to gain understanding of the theoretical physics problems considered.
中图分类号:
杨亦松. 曲面上的曲率在理论物理中的一些应用[J]. 数学季刊, 2023, 38(3): 221-253.
YANG Yi-song. Some Applications of Surface Curvatures in Theoretical Physics[J]. Chinese Quarterly Journal of Mathematics, 2023, 38(3): 221-253.
[1] | 王俊杰, 余 洋, 胡建彪, 温 芃. 图包含 (a,b) 奇偶因子的谱半径条件[J]. 数学季刊, 2024, 39(4): 431-440. |
[2] | 张雯雯, 李平润. 非齐次Riemann-Hilbert边值问题的求解[J]. 数学季刊, 2024, 39(3): 262-269. |
[3] | 李然, 连铁艳. 有关广义 (h,m)-预不变凸函数的Ostrowski型不等式及其应用[J]. 数学季刊, 2024, 39(3): 270-287. |
[4] | 陈玉磊, 郭东威. 涉及调和数的组合恒等式[J]. 数学季刊, 2024, 39(3): 307-314. |
[5] | 江东月, 唐忠华, 房少梅. 具有奇异势和一般非线性的伪抛物方程解的局部存在性和爆破[J]. 数学季刊, 2024, 39(2): 111-127. |
[6] | 辛 欣, 谢博易, 刘科科. 基于半参数Copula学习的确定性独立筛选研究[J]. 数学季刊, 2024, 39(2): 144-160. |
[7] | 席维鸽, 许涛. 非正则赋权有向图 Aa 谱半径的上界[J]. 数学季刊, 2024, 39(2): 161-170. |
[8] | 许云龙, 钟裕民. Bouw-M¨oler曲面的Minkowski常数[J]. 数学季刊, 2024, 39(2): 185-199. |
[9] | 关庄丹, 梁梦翔. 在复二维仿射锥上的完备余齐性一Kähler度量[J]. 数学季刊, 2024, 39(2): 200-220. |
[10] | 唐忠华, 房少梅. 带分数阶Robin边界条件的时间-空间分数阶扩散方程的有限差分方法[J]. 数学季刊, 2024, 39(1): 18-30. |
[11] | 洪勇, 赵茜. 两类加权空间间的积分算子与离散算子的有界性及算子范数估计[J]. 数学季刊, 2024, 39(1): 59-67. |
[12] | 王川, 乔炎. Korteweg-de Vries方程的Legendre时空谱配置方法[J]. 数学季刊, 2023, 38(4): 392-400. |
[13] | 许娜. 一类次线性基尔霍夫方程基态解的存在性[J]. 数学季刊, 2023, 38(4): 410-414. |
[14] | 徐晓濛. Stokes 现象与量子群的表示[J]. 数学季刊, 2023, 38(3): 311-330. |
[15] | 黄述亮. 带有对合的素环的微分恒等式[J]. 数学季刊, 2023, 38(2): 134-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||