数学季刊 ›› 2022, Vol. 37 ›› Issue (4): 386-393.doi: 10.13371/j.cnki.chin.q.j.m.2022.04.006
摘要: For a graph G = (V,E), a Roman {2}-dominating function f :V → {0,1,2} has the property that for every vertex v ∈V with f(v) = 0, either v is adjacent to at least one vertex u for which f(u) = 2, or at least two vertices u1 and u2 for which f(u1) =f(u2) = 1. A Roman {2}-dominating function f = (V0,V1,V2) is called independent if V1∪V2 is an independent set. The weight of an independent Roman {2}-dominating function f is the value ω(f) =\sumv∈V f(v), and the independent Roman {2}-domination number i{R2}(G) is the minimum weight of an independent Roman {2}-dominating function on G. In this paper, we characterize all trees with i{R2}(T) =γ(T)+ 1, and give a linear time algorithm to compute the value of i{R2}(T) for any tree T.
中图分类号: