数学季刊 ›› 2019, Vol. 34 ›› Issue (3): 274-282.doi: 10.13371/j.cnki.chin.q.j.m.2019.03.005

• • 上一篇    下一篇

拟线性抛物型趋化模型的整体有界解研究

  

  • 收稿日期:2019-01-14 出版日期:2019-09-30 发布日期:2020-08-23
  • 基金资助:
    supported by Shandong Provincial Natural Science Foundation,China(ZR2017LA003)

Globally Bounded Solutions in A Chemotaxis Model of Quasilinear Parabolic Type

  1. College of Science, China University of Petroleum
  • Received:2019-01-14 Online:2019-09-30 Published:2020-08-23
  • Contact: Liu Bing-chen (1976-), male, associate professor, weifang, Ph.D.
  • Supported by:
    supported by Shandong Provincial Natural Science Foundation,China(ZR2017LA003)

Abstract: In this paper,we consider a quasilinear parabolic-parabolic chemotaxis model with nonlinear diffusivity,aggregation and logistic damping source: where k1 epu≤D(u) or k1 up≤D(u);k2 equ≤S(u)≤k3 equ;g(u)≤a-beku.It is proved that,if q <k-1 or q=k-1 and b> b0 for some constant b0> 0,then there exists a unique classical solution which is globally bounded.The results show the effect of the aggregation and the logistic damping source on the existence of globally bounded solutions.

Key words: Chemotaxis, Nonlinear Diffusivity, Aggregation, Logistic Type Damping, Globally Bounded Solution

中图分类号: