数学季刊 ›› 2013, Vol. 28 ›› Issue (4): 585-591.

• • 上一篇    下一篇

一类时滞p-Laplacian中立型泛函微分方程周期解问题

  

  1. College of Mathematics and Computer Science, Anhui Normal University

  • 收稿日期:2012-04-01 出版日期:2013-12-30 发布日期:2023-02-20
  • 作者简介:CHEN Wen-bin(1986-), male, native of Anqing, Anhui, M.S.D., engages in differential equation.
  • 基金资助:
    Supported by the Key NSF of the Education Ministry of China(2007047); Supported by the Scientific Research Foundation of NUIST(09022)

Periodic Solutions for p-Laplacian Neutral Functional Differential Equation with a Deviating Argument

  1. College of Mathematics and Computer Science, Anhui Normal University

  • Received:2012-04-01 Online:2013-12-30 Published:2023-02-20
  • About author:CHEN Wen-bin(1986-), male, native of Anqing, Anhui, M.S.D., engages in differential equation.
  • Supported by:
    Supported by the Key NSF of the Education Ministry of China(2007047); Supported by the Scientific Research Foundation of NUIST(09022)

摘要: In this paper, by using the continuation theorem of coincidence degree theory and some analysis methods, we study a kind of periodic solutions to p-Laplacian neutral functional differential equation with a deviating argument (φp(x(t)-cx(t-σ)) ′) ′ + f(t, x ′(t)) + g(t, x(t-τ(t))) = e(t), some new results on the existence of periodic solutions is obtained.

关键词: periodic solution, deviating argument, coincidence degree

Abstract: In this paper, by using the continuation theorem of coincidence degree theory and some analysis methods, we study a kind of periodic solutions to p-Laplacian neutral functional differential equation with a deviating argument (φp(x(t)-cx(t-σ)) ′) ′ + f(t, x ′(t)) + g(t, x(t-τ(t))) = e(t), some new results on the existence of periodic solutions is obtained.

Key words: periodic solution, deviating argument, coincidence degree

中图分类号: