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Abstract: Dyons are an important family of topological solitons carrying both electric

and magnetic charges and the presence of a nontrivial temporal component of the gauge

field essential for the existence of electricity often makes the analysis of the underlying

nonlinear equations rather challenging since the governing action functional assumes an

indefinite form. In this work, developing a constrained variational technique, We establish

an existence theorem for the dyon solitons in a Skyrme model coupled with SO(3)-gauge

fields, formulated by Brihaye, Kleihaus, and Tchrakian. These solutions carry unit monopole

and Skyrme charges.
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§1. Introduction

Physical Background and Origins. Dyon is a hypothetical particle carrying both electric
and magnetic charges. In contemporary physics, dyons and monopoles are relevant theoretical
constructs for an interpretation of quark confinement [20, 23]. As early as in 1894, P. Curie [13]
first formulated the concept of a magnetic monopole, a particle with only one magnetic pole,
whose existence was widely suspected. In 1931, Dirac [15] explored the electromagnetic duality
in the Maxwell equations and obtained a mathematical formalism of magnetic monopoles. It
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is sophisticated and highly challenging to obtain the existence of monopole and dyons in the
Yang–Mills theory by mathematical methods.

As is well known, the Skyrme model is important for baryon physics [1, 9, 21] and gauge fields
are often introduced to investigate inter-particle forces [2, 6-7, 11, 14, 16]. Motivated by these
applications, here we are interested in the combined system consisting of the Skyrme model
coupled with SO(3) gauge fields originally presented by Brihaye, Kleihaus, and Tchrakian [6].
We may mention that dyons of the Georgi–Glashow model [22] and the SO(3) gauged Skyrme
model [7, 18] have been obtained recently. Combining these two models, we encounter a new
system. The numerical study of the Skyrme dyon solution conducted in [6] provides us evidence
of existence of the dyons. The purpose of this paper is to give an analytic proof for the existence
of such solutions. The difficulty of the indefinite action functional still appears as stated. To
overcome this, we need to obtain suitable uniform estimates for a minimizing sequence at
singular boundary points and achieve strong convergence for the sequence of the negative terms
as seen in Gao and Yang [18].

Mathematical Problem. Let a, f, g, h be real-valued functions of variable x ∈ [0,∞) and
satisfying the two-point boundary condition

a(0) = 1, f(0) = g(0) = h(0) = 0;

a(∞) = 0, f(∞) = θ0, h(∞) = 1, g(∞) = q,



 (1.1)

where θ0 and q are some parameters. Consider the energy density functions E1 and E2 given by

E1 =
(

da

dx

)2

+
(a2 − 1)2

2x2
+

1
2
x2

(
dh

dx

)2

+ a2h2 +
λ

4
x2(h2 − 1)2 +

κa2 sin2 f

([
df

dx

]2

+
a2 sin2 f

x2

)
+

ξ

2

(
x2

[
df

dx

]2

+ 2a2 sin2 f

)
, (1.2)

E2 =
1
2
x2

(
dg

dx

)2

+ a2g2, (1.3)

where λ, κ ≥ 0 and ξ > 0 are constants. We shall aim at obtaining a critical point of the
indefinite action functional

L(a, f, g, h) =
∫ ∞

0

(E1 − E2) dx, (1.4)

subject to the boundary condition (1.1) and the finite-energy condition

E(a, f, g, h) =
∫ ∞

0

(E1 + E2) dx < ∞. (1.5)

Such a critical point is a spherically symmetric particle-like solution, of the equations of motion
of the classical Skyrme model coupled with gauge fields taking values in the Lie algebra of the
orthogonal group SO(3), carrying unit topological charge and coined as ‘dyon’ in quantum field
theory.

The rest of the paper is organized as follows. In Section 2, we review the SO(3) gauged
Skyrme model of Brihaye–Kleihaus–Tchrakian [6]. In the subsequent three sections, we establish
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our main existence theorem. Specifically, in Section 3, we prove the existence of a finite-
energy critical point of the indefinite action functional by formulating and solving a constrained
minimization problem as in [18]. In Section 4, we show that the critical point obtained in
the previous section for the constrained minimization problem solves the original equations of
motion by proving that the constraint does not give rise to an unwanted Lagrange multiplier
problem. In Section 5, we study the properties of the solutions. In particular, we obtain some
uniform decay estimates which allow us to describe the dependence of the (’t Hooft) electric
charge on the asymptotic value of the electric potential function at infinity.

§2. Dyons in The Combined Skyrme Model

The field-theoretical model under consideration is an elegant combination of the classical
Georgi–Glashow model and of the semi-locally gauged Skyrme model investigated previously in
[3, 8]. In the model, the matter field is an R3-valued Higgs field, Φα (α = 1, 2, 3) over the (3+1)-
dimensional Minkowski spacetime R3,1 of signature (+ − −−), of coordinates denoted by xµ

(µ = 0, 1, 2, 3). Thus, using Aα
µ to denote the real-valued gauge fields in a fixed representation

of the gauge group SO(3). We can express the induced gauge-covariant derivatives and gauge
field strength tensors as

DµΦα = ∂µΦα + εαβγAβ
µΦγ , Fα

µν = ∂µAα
ν − ∂νAα

µ + εαβγAβ
µAγ

ν , (2.1)

where the late Greek letters µ, ν, ... = 0, 1, 2, 3 label the Minkowski spacetime indices, while the
early Greek letters α, β, · · · = 1, 2, 3 label the indices of the algebra of the gauge group SO(3).
With the above notation, the Lagrangian density of the Georgi–Glashow model is given by

LGG = −1
4
λ4

0|Fα
µν |2 +

1
2
λ4

1|DµΦα|2 − 1
4
λ4

2(η
2 − |Φα|2)2 (2.2)

The finite-energy condition implies that Φ = (Φα) maps the 2-sphere at the infinity of the space
R3 into the 2-sphere |Φ|2 = η2 (η > 0) which naturally associated Φ with an integer class in
π2(S2) = Z. Such an integer is called the monopole number of the model and is denoted by
QM, which is also referred to as the monopole charge.

In the classical Skyrme model, one is concerned with a map φ = (φa) where a = (α, 4) from
the Minkowski spacetime into the standard 3-sphere so that |φ|2 =

∑4
a=1(φ

a)2 = 1 and φa

(a = 1, 2, 3, 4) may also be expressed as (φα, φ4) (α = 1, 2, 3). Our gauged Skyrme model is
so gauged that there is the usual global O(4) symmetry but there is a local SO(3) symmetry
imposed on the φα part. Therefore the gauge-covariant derivatives are semi-local and defined
by

Dµφα = ∂µφα + εαβγAβ
µφγ , Dµφ4 = ∂µφ4. (2.3)

As a consequence, the semi-local gauged Skyrme model is governed by the Lagrangian density

LO(4) = −1
4
κ4

0|Fα
µν |2 +

1
2
κ2

1|Dµφα|2 − 1
8
κ4

2|D[µφaDν]φ
b|2 (2.4)
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Following [3, 8], we shall consider also the equations of motion coming from the coupled
model resulting from (2.2) and (2.4) given by the Lagrangian density

L = LGG + LO(4). (2.5)

Interestingly, the non-Abelian Higgs field Φ and the Skyrme scalar field φ are now elegantly
coupled through a single Lie algebra so(3)-valued gauge field, Aµ = (Aα

µ).

Restricting to spherically symmetric static field configurations, we have

Aα
i =

a(r)− 1
r

εiαβx̂β , Aα
0 = g(r)x̂α (2.6)

Φα = ηh(r)x̂α (2.7)

φα = sin f(r)x̂α, φ4 = cos f(r), (2.8)

where x̂ = x/r, r = |x|, x = (x1, x2, x3). Notice that the real-valued functions a(r), h(r), g(r)
and f(r) are dimensionless. It will be convenient to introduce a dimensionless radial variable

x = ηr, (2.9)

which should not be confused with that denoting a point in R3 before.

Substituting the Ansatze (2.6)–(2.8) into the static version of the equations of motion of the
Lagrangian density (2.5), we arrive at following one-dimensional (radial) Lagrangian density,
which is still denoted by the same letter L, defined by

L = E1 − E2, (2.10)

where

E1 = (a′)2 +
(a2 − 1)2

2x2
+

1
2
x2(h′)2 + a2h2 +

λ

4
x2(h2 − 1)2 +

κa2 sin2 f

(
(f ′)2 +

a2 sin2 f

x2

)
+

ξ

2

(
x2(f ′)2 + 2a2 sin2 f

)
, (2.11)

E2 =
1
2
x2(g′)2 + a2g2, (2.12)

and ′ denotes the differentiation d
dx

, ξ > 0, λ ≥ 0 and κ ≥ 0, such that the associated Hamilto-
nian (energy) density is given by

E = E1 + E2. (2.13)

It should be noted that, although there are six free coupling constants, λ0, λ1, λ2, and
κ0, κ1, κ3 in the original Lagrangian action density (2.5), the radially symmetrically reduced
action density (2.10) as seen in (2.11) and (2.12) contains only three free coupling constants,
ξ, λ, κ, after some appropriate rescaling formulation. See [3, 8] for details.

The equations of motion of the original Lagrangian density (2.10) now become the variational
equation

δL = 0, (2.14)
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of the static action

L(a, f, h, g) =
∫ ∞

0

Ldx =
∫ ∞

0

(E1 − E2) dx, (2.15)

which is indefinite. Explicitly, the equation (2.14) may be expressed in terms of the unknowns
a, f, h, g as

a′′ = a

(
a2 − 1

x2
+ h2 + ξ sin2 f + κ sin2 f(f ′)2 +

κa2 sin4 f

x2
− g2

)
, (2.16)

(
2κa2 sin2 ff ′ + ξx2f ′

)′
= 2ξa2 sin f cos f + 2κa2 sin f cos f(f ′)2 +

2κa4 sin3 f cos f

x2
, (2.17)

(x2h′)′ = h
(
2a2 + λx2(h2 − 1)

)
, (2.18)

(x2g′)′ = 2a2g. (2.19)

We are to solve these equations under suitable boundary conditions. First we observe in
view of the ansatz (2.6)–(2.8) that the regularity of the fields φ and Aµ imposes at x = 0 the
boundary condition

a(0) = 1, f(0) = 0, h(0) = 0, g(0) = 0. (2.20)

Furthermore, the finite-energy condition

E(a, f, h, g) =
∫ ∞

0

E dx =
∫ ∞

0

(E1 + E2) dx < ∞, (2.21)

the non-triviality of the g-sector lead us to the boundary condition at x = ∞, given as

a(∞) = 0, f(∞) = θ0, h(∞) = 1, g(∞) = q, (2.22)

where 0 < θ0 < π
2 , q > 0 (say) is a parameter, to be specified later, which defined the asymptotic

value of the electric potential at infinity.

It can be directly checked that the above radially symmetric ansatz leads to the unit
monopole charge, QM = 1. There is another topological quantity, however, called the Skyrme
charge, that needs to be elaborated upon in some detail. Recall that φ maps R3 into S3. In
the classical situation without local symmetry, φ has a limiting position at infinity of R3 which
enables us to compactify R3 into S3 so that φ defines a map from S3 into itself and is thus
characterized by an integer called the Skyrme charge, QS in the homotopy group π3(S3). In
the semi-locally gauged situation, however, the gauge coupling complicates the asymptotic be-
havior at infinity in such a way that the aforementioned compactification breaks down due to
a spontaneous symmetry breaking effect caused by gauge fields which makes the topological

Note that QM is a topological charge, in fact a homotopy invariant defined from the Higgs scalar, which

should not be confused with the magnetic charge Qm, to be addressed below, arising from the underlying

electromagnetism.
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characterization of the field configuration much more sophisticated. Nevertheless, formally, the
same integral formula that defines the Skyrme charge has the same expression [18]:

QS = − 2
π

∫ ∞

0

sin2 f(x)f ′(x) dx. (2.23)

In our case, QS is no longer an integer. In fact, applying the boundary condition (2.20) and
(2.22) in (2.23), we obtain

QS = QS(θ0) =
1
π

(
1
2

sin 2θ0 − θ0

)
, (2.24)

which is strictly decreasing for θ0 ∈ [0, π/2].

Finally, the associated magnetic and electric charges of the solutions following the ’t Hooft
electromagnetism as calculated in [18] are given by Qm = 1 and

Qe = 2
∫ ∞

0

a2(x)g(x) dx, (2.25)

respectively.

We can now state our main result regarding the existence of dyon solitons in the coupled
George–Glashow and the gauged Skyrme model [6] as follows.

Theorem 2.1 For any parameters θ0 and q satisfying

0 < θ0 <
π

2
, 0 < q < 1, (2.26)

the equations of motion of the minimally gauged Skyrme model defined by the Lagrangian
density (2.10), have a static finite-energy spherically symmetric solution described by the ansatz
(2.6)–(2.8) so that (a, f, h, g) satisfies the boundary conditions (2.20) and (2.22). Furthermore,
such a solution enjoys the property that f(x), g(x) are strictly increasing, and a(x) > 0, 0 <

f(x) < θ0, 0 < g(x) < q, h(x) > 0 for all x > 0. The solution carries a unit monopole charge
QM = 1, a continuous Skyrme charge QS given as a function of θ0 by

QS(θ0) =
1
π

(
1
2

sin 2θ0 − θ0

)
, 0 < θ0 <

π

2
, (2.27)

which may assume any value in the interval (− 1
2 , 0), a unit magnetic charge Qm = 1, and an

electric charge given by the integral

Qe = 2
∫ ∞

0

a2(x)g(x) dx, (2.28)

which depends on q and approaches zero as q → 0.

The above theorem will be established in the subsequent sections.
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§3. Constrained Minimization Problem

In this section, we will prove the theorem 2.1 by using a indefinite variational process. In
functional (2.15), the difficulty arises from the negative terms and it will be overcomed by
solving a constrained minimization problem. And we will show the solution solve the equations
(2.16)–(2.19) in next section.

To proceed, we introduce the admissible space for our variational problem as follows

A= {(a, f, h, g)|a, f, h, g are continuous functions over [0,∞) which are absolutely

continuous on any compact subinterval of (0,∞), satisfy the boundary condi-

tions a(0) = 1, a(∞) = 0, f(0) = 0, f(∞) = θ0, h(∞) = 1, g(∞) = q, and

of finite-energy E(a, f, h, g) < ∞} .

It is hard to find a critical point of the indefinite functional L directly in A. Then we
can deal with the negative term with respect to g independently, and then consider a, f, h for
fixed g. Following this, we need a further restriction: we assume that (a, f, h, g) satisfies the
constraint ∫ ∞

0

(x2g′G′ + 2a2gG) dx = 0, (3.1)

where G is an arbitrary test function satisfying G(∞) = 0 and

J(a,G) =
∫ ∞

0

(x2(G′)2 + 2a2G2) dx < ∞. (3.2)

The constrained class C is defined to be

C = {(a, f, h, g) ∈ A| (a, f, h, g) satisfies (3.1)}. (3.3)

In the rest of this section, we shall focus on the following constrained minimization problem

min {L(a, f, h, g)|(a, f, h, g) ∈ C} . (3.4)

Here we emphasize that the constraint (3.1) partially freezes the temporal component of the
gauge field, which, in view of the ’t Hooft electromagnetic formalism (?) of non-Abelian gauge
field theory, partially freezes the electric sector of the system of equations of motion. By doing
so, we are able to tackle the negative component arising in the indefinite Lagrangian action
functional. We then show that the minimizer of the full (indefinite) Lagrangian action (but not
the positive definite energy functional) subject to the constraint (3.1) will be a finite-energy
critical point of the Lagrangian action, which is a classical solution of the original equations of
motion.

Lemma 3.1 Assume 0 < θ0 < π/2. For the problem (3.4), we may always restrict our
attention to functions f satisfying 0 ≤ f ≤ π/2.
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Proof It is easy to see that L(a, f, h, g) = L(a, |f |, h, g). Hence we may assume f ≥ 0
in the minimization problem. Noting f(∞) = θ0 < π

2 , if there is some x0 > 0 such that
f(x0) > π

2 , we see that there is an interval (x1, x2) with 0 ≤ x1 < x0 < x2 < ∞ such that
f(x) > π

2 (x ∈ (x1, x2)) and f(x1) = f(x2) = π
2 . We now modify f by reflecting f over the

interval [x1, x2] with respect to the level π
2 to get a new function f̃ satisfying f̃(x) = π − f(x)

(x ∈ [x1, x2]) and f̃(x) = f(x) (x 6∈ [x1, x2]). It follows that L(a, f, h, g) = L(a, f̃ , h, g) again.

Lemma 3.2 The constrained admissible class C defined in (3.3) is non-empty. Further-
more, if q > 0 and (a, f, h, g) ∈ C, we have 0 < g(x) < q for all x > 0 and that g is the unique
solution to the minimization problem

min
{

J(a,G)
∣∣∣∣ G(∞) = q

}
. (3.5)

Proof To proceed, we rewrite the action functional as

L(a, f, h, g) =
∫ ∞

0

Ldx =
∫ ∞

0

E1 dx−
∫ ∞

0

E2 dx ≡ F (a, f, h)− J(a, g).

Then any element (a, f, h, g) ∈ C may be obtained by first choosing suitable a, f, h such that
F (a, f, h) < ∞ and then choosing a unique g such that g(∞) = q and g solves the problem
(3.5).

In fact, the Schwartz inequality gives us the asymptotic estimate

|G(x)− q| ≤
∫ ∞

x

|G′(s)| ds ≤ x−
1
2

(∫ ∞

x

s2(G′(s))2 ds

) 1
2

≤ x−
1
2 J

1
2 (a,G), (3.6)

which indicates that the limiting behavior G(∞) = q can be preserved for any minimizing
sequence of the problem (3.5). Hence (3.5) is solvable. In fact, it has a unique solution, say
g, for any given function a, in view of the functional J(a, ·) is strictly convex. Since J(a, ·) is
even, we have g ≥ 0. By the maximum principle in (2.19), we conclude with 0 < g(x) < q for
all x > 0. The uniqueness of the solution to (3.5), for given a, follows easily.

Lemma 3.3 For any (a, f, h, g) ∈ C, g(x) is nondecreasing for x > 0 and g(0) = 0.

Proof Lemma 3.2 shows that 0 < g(x) < q. We claim that

lim inf
x→0

x2|g′(x)| = 0. (3.7)

Assume otherwise, then there are ε0, δ > 0, such that x2|g′(x)| ≥ ε0 for 0 < x < δ, which
contradicts the convergence of the integral

∫∞
0

x2(g′)2dx.

Then (3.7) implies that there is a sequence {xk}, such that xk → 0 and x2
k|g′(xk)| → 0, as

k →∞. Noting this fact and (2.19), we obtain

x2g′(x) = x2g′(x)− lim
k→∞

x2
kg′(xk)

= lim
k→∞

∫ x

xk

(s2g′(s))′ ds =
∫ x

0

(s2g′(s))′ ds
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=
∫ x

0

2a2(s)g(s) ds ≥ 0, x > 0. (3.8)

Therefore g′(x) ≥ 0 and g(x) is nondecreasing. As a result, we see that there is number g0 ≥ 0
such that

lim
r→0

g(x) = g0. (3.9)

It is necessary to prove g0 = 0. Otherwise, if g0 > 0, we use the fact a(0) = 1, x2g′(x) → 0
(x → 0) (see (3.7)), and L’Hopital’s rule to obtain

2g0 = 2 lim
x→0

a2(x)g(x) = lim
x→0

(x2g′)′ = lim
x→0

x2g′(x)
x

= lim
x→0

xg′(x).

Then, there is a δ > 0, such that

g′(x) ≥ g0

x
, 0 < x < δ. (3.10)

Integrating (3.10), we obtain

|g(x2)− g(x1)| ≥ g0

∣∣∣∣ln
x2

x1

∣∣∣∣ ,

which contradicts the existence of limit stated in (3.9). Then g0 = 0, and the lemma is proved.

Lemma 3.4 For any 0 < θ0 < π/2, 0 < q < 1, and (a, f, h, g) ∈ C, we have the following
partial coercive lower estimate

L(a, f, h, g)≥
∫ ∞

0

dx

{
(a′)2 +

(a2 − 1)2

x2
+

λ

4
x2(h2 − 1)2 +

ξ

2
[x2(f ′)2 + 2a2 sin2 f ]+

κa2 sin2 f

[
(f ′)2 + 2

a2 sin2 f

2x2

]
+

C1

2
x2(h′)2 + C2a

2h2

}
, (3.11)

where C1, C2 > 0 are constants depending on q only.

Proof For any (a, f, h, g) ∈ C, set g1 = qh. Then g1 satisfies g1(∞) = q. As a result, we
have

J(a, g1) ≥ J(a, g), (3.12)

and thus,

L(a, f, h, g) = F (a, f, h)− J(a, g) ≥ F (a, f, h)− J(a, g1)

=
∫ ∞

0

dx

{
(a′)2 +

(a2 − 1)2

x2
+

λ

4
x2(h2 − 1)2 +

ξ

2
[x2(f ′)2 + 2a2 sin2 f ]+

κa2 sin2 f

[
(f ′)2 + 2

a2 sin2 f

2x2

]
+

1− q2

2
x2(h′)2 + (1− q2)a2h2

}
, (3.13)

which implies the lower estimate (3.11).

Lemma 3.5 Under the conditions stated in Theorem 2.1, the constrained minimization
problem (3.4) has a solution.

Proof Using Lemma 3.4, we see that

η0 = inf{L(a, f, h, g) | (a, f, h, g) ∈ C} (3.14)
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is well defined. Let {(an, fn, hn, gn)} be any minimizing sequence of (3.4). That is, (an, fn, hn, gn) ∈
C and L(an, fn, hn, gn) → η0 as n →∞. Without loss of generality, we may assume L(an, fn, hn, gn) ≤
η0 + 1 (say) for all n. Applying (3.11) and the Schwartz inequality, we obtain

|an(x)− 1| ≤
∫ x

0

|a′n(s)| ds ≤ x
1
2

(∫ x

0

(a′n(s))2 ds

) 1
2

≤ Cx
1
2 (η0 + 1)

1
2 , (3.15)

|fn(x)− θ0| ≤
∫ ∞

x

|f ′n(s)| ds ≤ x−
1
2

(∫ ∞

x

s2(f ′n(s))2 ds

) 1
2

≤ Cx−
1
2 (η0 + 1)

1
2 , (3.16)

|hn(x)− 1| ≤
∫ ∞

x

|h′n(s)|ds ≤ x−
1
2

(∫ ∞

x

s2(h′n(s))2ds

) 1
2

≤ Cx−
1
2 (η0 + 1)

1
2 . (3.17)

where C > 0 is a constant independent of n. In particular, an(x) → 1 uniformly as x → 0,
fn(x) → θ0 and hn(x) → 1 uniformly as x →∞.

For any (an, fn, hn, gn), the function Gn = qhn satisfies Gn(∞) = q. Then, by the definition
of gn and (3.11), we have

J(an, gn) ≤ J(an, Gn) = q2

∫ ∞

0

(r2(h′n)2 + a2
nh2

n) dr ≤ CL(an, fn, hn, gn), (3.18)

where C > 0 is a constant, which shows that J(an, gn) is bounded as well.

With the above preparation, we are now ready to study the limit of the sequence {(an, fn, hn, gn)}.
We introduce the Hilbert space (X, (·, ·)), where the functions in X are all continuously

defined in x ≥ 0 and vanish at x = 0 and the inner product (·, ·) is defined by

(ω1, ω2) =
∫ ∞

0

ω′1(x)ω′2(x) dx, ω1, ω2 ∈ X.

Since {an− 1} is bounded in (X, (·, ·)), we may assume without loss of generality that {an}
has a weak limit, say, a, in the same space,

∫ ∞

0

a′nω′ dx →
∫ ∞

0

a′ω′ dx, ∀ω ∈ X,

as n →∞.

Similarly, we consider the Hilbert space (Y, (·, ·)) where the functions in Y are all continu-
ously defined in x > 0 and vanish at infinity with the inner product (·, ·) defined by

(ω1, ω2) =
∫ ∞

0

x2ω′1ω
′
2 dx, ω1, ω2 ∈ Y.

Noting that {fn− θ0}, hn− 1 and {gn− q} are bounded in (Y, (·, ·)), we may assume that there
are functions f, h, g with f(∞) = θ0, h(∞) = 1, g(∞) = q, and f − θ0, h − 1, g − q ∈ (Y, (·, ·)),
such that ∫ ∞

0

x2W ′
nω′ dx →

∫ ∞

0

x2W ′ω′ dx, ∀ω ∈ Y, (3.19)

as n →∞, for Wn = fn − θ0, ω = f − θ0, Wn = hn − 1, ω = h− 1, and Wn = gn − q, ω = g− q,
respectively.
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In the sequel, we need to prove that the weak limit (a, f, h, g) of the minimizing sequence
{(an, fn, hn, gn)} obtained above actually lies in C. In other words, we need to show that
(a, f, h, g)satisfies the boundary conditions and the constraint (3.1). Using the uniform es-
timates (3.6), (3.15)-(3.17), we conclude that a(0) = 1, f(∞) = θ0, h(∞) = 1, g(∞) = q.
Moreover, by Lemma 3.4, we see that a ∈ W 1,2(0,∞). Therefore a(∞) = 0. To show f(0) = 0,
we use (3.15) to get a δ > 0 such that

|an(x)| ≥ 1
2
, x ∈ [0, δ]. (3.20)

Then, by (3.21), we obtain

sin2 fn(x)≤ 2
∫ x

0

| sin fn(s)f ′n(s)|ds

≤ 4x
1
2

(∫ x

0

a2
n(s) sin2 fn(s)(f ′n(s))2 ds

) 1
2

≤ 4κ−
1
2 x

1
2 L

1
2 (an, fn, hn, gn), x ∈ [0, δ]. (3.21)

Noting 0 ≤ fn ≤ π
2 , we invert (3.22) to get the uniform estimate

0 ≤ fn(x) ≤ Cx
1
4 , x ∈ [0, δ], (3.22)

where C > 0 is independent of n. Letting n → ∞ in (3.23), we obtain f(0) = 0 as desired.
Then the total boundary conditions are verified.

Then, the next thing is to verify (3.1). To this end, it is sufficient to establish the following
results,

∫ ∞

0

(a2
ngn − a2g)G dx→ 0, (3.23)

∫ ∞

0

(x2g′n − x2g′)G′ dx→ 0, (3.24)

for any test function G satisfying (3.2) and G(∞) = 0, as n →∞.

Using the fact G ∈ Y and (3.20), we conclude that (**) is valid.

To get (3.24), we rewrite

∫ ∞

0

(a2
ngn − a2g)G dx =

∫ δ1

0

+
∫ δ2

δ1

+
∫ ∞

δ2

≡ I1 + I2 + I3, (3.25)

for some positive constants 0 < δ1 < δ2 < ∞, and we begin with

I1 =
∫ δ1

0

(a2
n − a2)gnG dx +

∫ δ1

0

a2(gn − g)G dx ≡ I11 + I12. (3.26)

Noting (3.15) and (3.18), we see that there is a small δ > 0 such that gn ∈ L2(0, δ) and there
holds the uniform bound

‖gn‖L2(0,δ) ≤ K, (3.27)
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for some constant K > 0. Therefore, we may assume gn → g weakly in L2(0, δ) as n → ∞.
In particular, g ∈ L2(0, δ) and ‖g‖L2(0,δ) ≤ K. Besides, since in (3.2), the function a satisfies
a(0) = 1, we have G ∈ L2(0, δ) when δ > 0 is chosen suitable small. Then, using (3.15) and
taking δ1 ≤ δ, we have

|I11| ≤
∫ δ1

0

|a2
n − a2||gnG|dx ≤

∫ δ1

0

(|a2
n − 1|+ |a2 − 1|) |gnG|dx ≤ CKδ

1
2 ‖G‖L2(0,δ), (3.28)

where C > 0 is a constant independent of n. Therefore, for any ε > 0, we can take δ1 > 0
sufficiently small to assure |I11| < ε. On the other hand, since gn → g weakly in L2(0, δ) and
G ∈ L2(0, δ), we have I12 → 0 as n →∞.

Since {an} and {gn} are bounded sequences in W 1,2(δ1, δ2), using the compact embedding
W 1,2(δ1, δ2) 7→ C[δ1, δ2], we see that an → a and gn → g uniformly over [δ1, δ2] as n → ∞.
Thus I2 → 0 as n →∞.

To estimate I3, we recall that {J(an, gn)} is bounded by (3.18), gn(x) → q uniformly as
n → ∞ by (3.6), and G(x) = O(x−

1
2 ) as x → ∞ by (3.2). In particular, since q > 0, we may

choose x0 > 0 sufficiently large so that

|g(x)| ≥ q

2
, inf

n
|gn(x)| ≥ q

2
, x ≥ x0. (3.29)

From the above, we arrive at

|I3| ≤
∫ ∞

x

(|a2
ngn|+ |a2g|) |G|ds ≤ Cx−

1
2

∫ ∞

x

2
q
(a2

ng2
n + a2g2) ds, (3.30)

where x ≥ x0 (cf. (3.30)) and C > 0 is a constant. From (3.18), we see that for any ε > 0 we
may choose δ2 large enough to get |I3| < ε.

Summarizing the above discussion, we see that

lim sup
n→∞

∣∣∣∣
∫ ∞

0

(a2
ngn − a2g)G dx

∣∣∣∣ ≤ 2ε, (3.31)

which proves the desired conclusion(*). Thus, the claim (a, f, h, g) ∈ C follows.

To show that (a, f, h, g) is a solution of (3.4), we need to establish

η0 = lim inf
n→∞

L(an, fn, hn, gn) ≥ L(a, f, h, g). (3.32)

It is difficult to get this fact due to the negative terms in the functional L. To overcome this,
we may rewrite the Lagrange density (2.10) as

L(a, f, h, g) = L0(a, f, h)− E0(a, g), (3.33)

where

L0(a, f, h) = (a′)2 +
(a2 − 1)2

2x2
+

1
2
x2(h′)2 +

λ

4
x2(h2 − 1)2 +

κa2 sin2 f

[
(f ′)2 +

a2 sin2 f

2x2

]
+

ξ

2
[x2(f ′)2 + 2a2 sin2 f ] +
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a2(h− 1)2 + 2a2(h− 1) + a2(1− q2) (3.34)

E0(a, g) =
1
2
x2(g′)2 + a2(g − q)2 + 2a2(g − q)q, (3.35)

Therefore, to establish (3.33), we need to show that

lim inf
n→∞

∫ ∞

0

L0(an, fn, hn) dx ≥
∫ ∞

0

L0(a, f, h) dx, (3.36)

lim
n→∞

∫ ∞

0

E0(an, gn) dx =
∫ ∞

0

E0(a, g) dx. (3.37)

We first prove (3.38). Since both (an, gn) and (a, g) satisfy (3.1), i.e.,
∫ ∞

0

(x2g′nG′ + 2a2
ngnG) dx = 0,

∫ ∞

0

(x2g′G′ + 2a2gG) dx = 0, (3.38)

letting G = g − gn in the above equations and subtracting them, we obtain
∫ ∞

0

x2(g′n − g′)2dx = 2
∫ ∞

0

(a2
ngn − a2g)(g − gn)dx

=
∫ δ1

0

+
∫ δ2

δ1

+
∫ ∞

δ2

≡ I1 + I2 + I3, (3.39)

where 0 < δ1 < δ2 < ∞.

To estimate I1, we need to get some uniform estimate for the sequence {gn} as x → 0. Using
(3.15), we see that for any 0 < γ < 1

2 (say) there is a δ > 0 such that

2a2
n(x) ≥ (2− γ), x ∈ [0, δ]. (3.40)

We consider the comparison function of the form

σ(x) = Cx1−γ , x ∈ [0, δ], C > 0. (3.41)

Then
(x2σ′)′ = (1− γ)(2− γ)σ < 2a2

n(x)σ, x ∈ [0, δ]. (3.42)

Since gn solve (3.5) in Lemma 3.2, we have

(x2(gn − σ)′)′ > 2a2
n(x)(gn − σ), x ∈ [0, δ]. (3.43)

Choose C > 0 in (3.42) large enough so that Cδ1−γ ≥ q. Noting gn < q (Lemma 3.2), we have
(gn − σ)(δ) < 0 and (gn − σ)(0) = 0. In view of these boundary conditions and applying the
maximum principle to (3.44), we see that gn(x) < σ(x) for all x ∈ (0, δ). Or, more precisely,
we have

0 < gn(x) <
( q

δ1−γ

)
x1−γ , 0 < x < δ. (3.44)

Which implies that the weak limit g of {gn} satisfies the same estimate. Thus, from the uniform
estimates (3.15) and (3.45), we see that for any ε > 0 there is some δ1 > 0 (δ1 < δ) such that
|I1| < ε.
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Moreover, from (3.6) and (3.30), we get

|I3| ≤ 2
∫ ∞

δ2

(a2
ngn + a2g)(|gn − q|+ |g − q|) dx

≤ 4
q
(|gn(δ2)− q|+ |g(δ2)− q|)

∫ ∞

0

(a2
ng2

n + a2g2) dx

≤ 2
q
δ
− 1

2
2

(
J

1
2 (an, gn) + J

1
2 (a, g)

)
(J(an, gn) + J(a, g)) , (3.45)

which may be made small than ε when δ2 > 0 is large enough due to (3.18).

Furthermore, since an → a and gn → g in C[δ1, δ2], we see that I2 → 0 as n →∞.

From the above results regarding I1, I2, I3 in (3.40), we obtain the strong convergence

lim
n→∞

∫ ∞

0

x2(g′n − g′)2 dx = 0. (3.46)

In particular, we obtain

lim
n→∞

∫ ∞

0

x2(g′n)2 dx =
∫ ∞

0

x2(g′)2 dx. (3.47)

We can also prove that

lim
n→∞

∫ ∞

0

(
a2

n(gn − q)2 + 2a2
n(gn − q)q

)
dx =

∫ ∞

0

(
a2(g − q)2 + 2a2(g − q)q

)
dx. (3.48)

In fact, we have the fact that {(an, fn, hn, gn)} is bounded in W 1,2

loc(0,∞). Therefore the
sequence is convergent in C[α, β] for any pair of numbers, 0 < α < β < ∞. Noting that
an(x) → 1 and gn(x) → 0 as x → 0 uniformly, with respect to n = 1, 2, · · · , we see that an → a

and gn → g uniformly over any interval [0, β] (0 < β < ∞). Hence, using this result and the
uniform estimate (3.6), we get (3.49).

Then (3.38) follows from (3.48) and (3.49).

On the other hand, using the uniform estimate (3.17), we also have

lim
n→∞

∫ ∞

0

a2
n(hn − 1)2 + 2a2

n(hn − 1) dx =
∫ ∞

0

a2(h− 1)2 + 2a2(h− 1) dx. (3.49)

Finally, using (3.50), and the condition q < 1, i.e., 1 − q2 > 0, we get (3.37) and the proof
of the lemma is complete.

§4. Fulfillment of The Governing Equations

Let (a, f, h, g) be the solution of (3.4) obtained in the previous section. Due to the negative
terms in L, it is not obvious say (a, f, h, g) satisfies the governing equations (2.16)–(2.19).
Since we have solved a constrained minimization problem, we need to prove that the Lagrange
multiplier problem does not arise as a result of the constraint, which would otherwise alter the
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original equations of motion. In fact, since the constraint (3.1) involves a and g only and (3.1)
immediately gives rise to (2.19), we see that all we have to do is to verify the validity of (2.16)
because (2.17) and (2.18) are the f -equation and h-equation respectively (3.1) does not involve
f and h explicitly.

To proceed, we take ã ∈ C1
0 . For any t ∈ R, there is a unique corresponding function gt

such that (a + tã, f, h, gt) ∈ C and that gt smoothly depends on t. Set

gt = g + g̃t, G̃ =
(

d
dt

g̃t

)∣∣∣∣
t=0

. (4.1)

Since (a + tã, f, h, gt)|t=0 = (a, f, h, g) is a minimizing solution of (3.4), we have

0 =
d
dt

L(a + tã, f, h, gt)
∣∣∣∣
t=0

=
∫ ∞

0

dx

{
2a′ã′ +

(a2 − 1)aã

x2
+ 2ah2ã + 2ξ sin2 faã + 2κ sin2 f(f ′)2aã

2κ

x2
sin4 fa3ã− 2ag2ã

}
−

∫ ∞

0

dx

{
r2g′G̃′ + 2a2gG̃

}

≡ I1 − I2. (4.2)

It is clear that the vanishing of I1 implies (2.16) so that it suffices to prove that I2 vanishes.
To this end, from (3.1), we only need to show that G̃ satisfies the same conditions required of
G in (3.1).

In (3.1), using the replacements a 7→ a + tã, g 7→ gt, G 7→ g̃t, we have
∫ ∞

0

(
x2g′tg̃

′
t + 2(a + tã)2gtg̃t

)
dx = 0. (4.3)

Or, with gt = g + g̃t, we have
∫ ∞

0

(
x2(g′ + g̃′t)g̃

′
t + 2a2(g + g̃t)g̃t + 2t2ã2gtg̃t + 4taãgtg̃t

)
dx = 0. (4.4)

Recall that
∫∞
0

(
x2g′g̃′t + 2a2gg̃t

)
dx = 0. Using (4.4) and the Schwartz inequality, we have

∫ ∞

0

(x2(g̃′t)
2 + 2a2g̃2

t ) dx =
∣∣∣∣2t

∫ ∞

0

(tã2 + 2aã)gtg̃t dx

∣∣∣∣

≤ |2t|
(
|2t|

∫ ∞

0

ã2g2
t dx +

1
|2t|

∫ ∞

0

a2g̃2
t dx

)
+ 2t2

∫ ∞

0

ã2|gt| |g̃t|dx

= 4t2
∫ ∞

0

ã2g2
t dx +

∫ ∞

0

a2g̃2
t dx + 2t2

∫ ∞

0

ã2|gt| |g̃t|dx. (4.5)

Applying the bounds 0 ≤ g, gt ≤ q and the relation g̃t = gt − g in (4.5), we have
∫ ∞

0

(x2(g̃′t)
2 + a2g̃2

t ) dx≤ 4t2
∫ ∞

0

ã2g2
t dx + 2t2

∫ ∞

0

ã2|gt| |g̃t|dx

≤ 8q2t2
∫ ∞

0

ã2 dx. (4.6)
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As a consequence, we get

∫ ∞

0

(
x2

(
g̃′t
t

)2

+ a2

(
g̃t

t

)2
)

dx ≤ 8q2

∫ ∞

0

ã2 dx, t 6= 0. (4.7)

Applying g̃t(∞) = 0, the Schwartz inequality and (4.7), we have for t 6= 0 the estimate

∣∣∣∣
g̃t

t
(x)

∣∣∣∣ ≤
∫ ∞

x

∣∣∣∣
g̃′t(s)

t

∣∣∣∣ ds ≤ x−
1
2

(∫ ∞

x

s2

(
g̃′t
t

)2

ds

) 1
2

≤ 2
√

2q‖ã‖L2(0,∞).

Letting t → 0 in (4.7) and (4.8), we obtain J(a, G̃) < ∞ and G̃(x) = O(x−
1
2 ) (for x large).

In particular, G̃(∞) = 0 and G̃ indeed satisfies all conditions required in (3.1) for G. Hence I2

vanishes in (4.2). Therefore, the equation (2.16) has been fulfilled.

§5. Properties of The Solution Obtained

In this section, we investigate the properties of the solution (a, f, h, g).

Lemma 5.1 The solution (a, f, h, g) enjoys the properties a(x) > 0, h(x) > 0, 0 < g(x) <

q, 0 < f(x) < θ0, and both f(x) and g(x) are strictly increasing, for any x > 0.

Proof From Lemmas 3.1 and 3.2, we see that 0 ≤ g ≤ q and 0 ≤ f ≤ π
2 . Besides, it is

obvious that a ≥ 0 since both (2.11) and (2.12) are even in a.

If a(x0) = 0 for some x0 > 0, then x0 is a minimizing point and a′(x0) = 0. Using the
uniqueness of the solution to the initial value problem consisting of (2.16) and a(x0) = a′(x0) =
0, we get a ≡ 0 which contradicts a(0) = 1. Thus, a(x) > 0 for all x > 0. Similarly, we can
prove that f(x) > 0, g(x) > 0 for all x > 0. Since (3.8) is valid, we see that g(x) is strictly
increasing. In particular, g(x) < q for all x > 0.

Lemma 3.1 already gives us f ≤ π
2 . We now strengthen it to f < θ0. First it is easy

to see that f ≤ θ0. Otherwise there is a point x0 > 0 such that f(x0) > θ0. Thus, we can
find two points x1, x2, with 0 ≤ x1 < x0 < x2, such that f(x1) = f(x2) and f(x) ≥ f(x1)
for all x ∈ (x1, x2). Modify f to f̃ by setting f̃(x) = f(x1), x ∈ (x1, x2); f̃ = f , elsewhere.
Then (a, f̃ , h, g) ∈ C and L(a, f̃ , h, g) < L(a, f, h, g) because f cannot be constant-valued over
(x1, x2) by virtue of the equation (2.17) and the energy density E1 defined in (2.11) increases
for f ∈ [0, π

2 ]. This contradiction implies that f ≤ θ0. Next, we prove that f < θ0. Otherwise,
if f(x0) = θ0 for some x0 > 0, then x0 is a maximum point of f such that f ′(x0) = 0 and
f ′′(x0) ≤ 0. Inserting these results into (2.17), we arrive at a contradiction since 0 < θ0 < π

2 .

To see that f is non-decreasing, we assume otherwise that there are 0 < x1 < x2 such that
f(x1) > f(x2). Since f(0) = 0, we see that f has a local maximum point x0 below x2, which
is known to be false. Thus f is non-decreasing. To see that f is strictly increasing, we assume
otherwise that there are 0 < x1 < x2 such that f(x1) = f(x2). Hence f is constant-valued over
[x1, x2] which is impossible.

The proof of the lemma is complete.
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Lemma 5.2 For the solution (a, f, h, g), we have the asymptotic estimates

a(x) = O
(
e−α(1−ε)x

)
, g(x) = q + O

(
x−1

)
,

f(x) = θ0 + O
(
x−1

)
, h(x) = 1 + O

(
x−1e−β(1−ε)x

)
(5.1)

as x →∞, where ε ∈ (0, 1) is arbitrarily small and

α =
√

1− q2 + ξ sin2 θ0 , (5.2)

β =

√
3
4
λ + 1 . (5.3)

Proof To obtain the asymptotic estimate of a, we introduce a comparison function η,

b(x) = Ce−α(1−ε)x, x > 0. (5.4)

From (2.16) and the obtained asymptotic behavior of a, f, h, g, we see that there is a suffi-
ciently large xε > 0 so that

(a− b)′′ = a

(
a2 − 1

x2
+ h2 − g2 + ξ sin2 f + κ sin2 f

(
f ′2 +

a2 sin2 f

x2

))
−

Cα2(1− ε)2b

≥ a(1− q2 + ξ sin2 θ0)(1− ε)2 − α2(1− ε)2b

= α2(1− ε)2(a− b), x > xε.

Take the coefficient C in (5.4) large enough to make a(xε) − b(xε) < 0. Since a − b vanishes
at infinity, applying the maximum principle in the above inequality, we derive the bound a < b

for x > xε as desired.

To get the estimate for g, from (3.8) we see that

g′(x) =
1
x2

∫ x

0

2a2(s)g(s) ds, x > 0, (5.5)

which leads to
q − g(x) =

∫ ∞

x

1
s2

∫ s

0

2a2(s′)g(s′) ds′ ds = O(x−1), (5.6)

for x > 0 large, since a(x) vanishes exponentially fast at x = ∞.

Similarly, we obtain the asymptotic estimate of f .

Set H = x(h− 1), using the fact h(∞) = 1 and the estimate of a in (decay), we have

H ′′ =
(x2h′)′

2x
= λH

h(h + 1)
2

+ h
a2

x

≤ 3
4
λhH + H

a2

x2
≤ β2(1− ε)2H, x >> 1.

Let c(x) = Ce−β(1−ε)x be a comparison function. Then there is a sufficiently large xε > 0 so
that

(H + η)′′ ≤ β2(1− ε)2(H + c), x ≥ xε. (5.7)
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For fixed xε, we take the constant C in c large enough to make H(xε) + c(xε) > 0. From
the finite-energy condition we get that there exist a sequence {xj}: xj → ∞ (j → ∞), such
that H(xj) → 0. Furthermore, we have H(xj) + c(xj) → 0 (j → ∞). Applying the maximum
principle in (5.7), we derive that H + c > 0, i.e. 0 < x(1 − h) < c for x ≥ xε. Then we get
h = 1 + O(x−1e−β(1−ε)x) as x →∞. The proof of the lemma is complete.

Lemma 5.3 For the solution (a, f, h, g) with fixed θ0 ∈ (0, π/2), the electric charge

Qe(q) = 2
∫ ∞

0

a2(x)g(x)dx (5.8)

enjoys the property Qe(q) → 0 as q → 0.

Proof For fixed θ0, since a vanishes exponentially fast at infinity uniformly with respect
to q ∈ (0, 1) and 0 < g(x) < q for all x > 0, we see that we can apply the dominated convergence
theorem to (5.8) to conclude that Qe → 0 as q → 0.
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