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§ Introduction

This is a short presentation on the theory of “buildings” as an object of study in algebra

and geometry. A building is a combinatorial geometry which is constructed from a Coxeter
group.

Theory of buildings is one of the spectacular achievements in the second half of the twentieth
century created by almost one person - Jacques Tits - for this work he was given the Abel Prize
in 2008.

Tits first thought of buildings as an incidence geometry - see [Bruyl6], [Uberll] for an
introduction to this geometry. Likewise we begin our description of buildings as such a geometry

- in fact we start with the definition of a graph - this is a combinatorial object we see everywhere.
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Then we explain what is a ‘geometry’ and what is an incidence geometry by using the projective
plane as an example. Next we define a reflection as a linear map in a finite dimensional real
vector space and introduce the concept of a finite reflection group which is a crucial ingredient
in the theory of building. Finally we shall give two definitions of a building : one as a chamber
system and the other as a chamber complex. We hope that this material is accessible to an

undergraduate student who has taken courses in linear algebra and elementary group theory.

The study of buildings is part of geometric combinatorics (see [Buek95], [GGL9I5]). Because
of its combinatorial nature this theory have many applications in modern engineering such as
circuit design, power supply grids, neural networks, communication systems, drugs design. As
theory of buildings is almost unknown in mathematics department in China, it is our goal here
is to sketch the basic foundational materials for Chinese students who are interested in the
applications of buildings theory.

We would like to thank Xiaoyang Guo of CNU for typing in tex from a handwritten draft.

We thank the referee for a careful reading and useful suggestions. We thank the Editor

Professor Han Xiaosen for his support and encouragements.
8§1. Geometry

Instead of starting with a general definition of a building we begin with a simple revision in

geometry.

1.1 Graphs A graph A is given by a pair (V(A), E(A)) together with a map v from
E(A) to the set of unordered pairs of V(A). An element of V(A) is called a vertex, while
an element of E(A) is called an edge. We also say A is a graph on V(A). For e € E(A),
v(e) = {v,w} is taken to mean that e is a “path” joining the vertices v and w. Here is an

Pevay

example of a graph

Clearly we can identify E(A) with a set of subsets of size 2 of V(A) and define a graph as
a pair (V(A), E(A)) where E(A) is just a set of subsets of size 2 of V(A). If E(A) is the set
of all two-elements subsets of V(A), then we call A a complete graph.

A graph isomorphism ¢ from a graph G; = (V(G1), E(G1)) to a graph G, = (V(G2), E(G2))
is given by bijections
V(G1) < V(G2)
{ E(G1) < E(G2)
such that the edges joining any two vertices of G; are mapped to the edges joining the corre-

sponding vertices of Gs.
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Example: the following graphs
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are isomorphic, the required bijections are
Vertices: u <= [, v > m,w <> n,x <> D,y <> q,2 <> T.

Edges: e; < f;.
A graph A is said to be finite if both V(A) and E(A) an finite set. A graph is said to be

locally finite if the number of edges incident to any vertex is finite; e.g

Lo«

1.2 Trees A path of length m in a graph A = (V| F) is a sequence
(.130,.’171, .. .,Z‘m)

of vertices xg,x1,..., T, such that (z;_1,z;) € F for all 1 < i < m and z; is different from
x;—9 for all 2 <4 < m. The distance dist(x,y) from z to y is the length of the shortest path
from x to y. The diameter of a graph A = (V, E) is the supremum of the set

{dist(u,v) : u,v € V}.
A circuit is a path of positive length whose first and last vertices are the same. The girth of a
graph is the length of a shortest circuit (or oo if there are no circuits).

A graph G is said to be connected if given any pair of vertices v,w of G ,there is a path

from v to w.

A tree is a connected non-empty graph without circuits. Here are two examples of trees
- the picture on the right is a building with its boundary which we will explain in the next

chapter.



4 CHINESE QUARTERLY JOURNAL OF MATHEMATICS Vol.35
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The number of edges to which a vertex = of a tree belongs is called the valency of z. If every
vertex has the same valency we say that this tree is homogeneous. Given two integers ¢, q+
such that 1 < ¢ < ¢4, we say a tree G is a semi-homogeneous tree of type (g, ¢4 ) if every vertex
has valency ¢ + 1 or ¢4+ + 1 and two adjacent vertices have different valencies. A homogeneous
trees comes from the group SL(2) over a local field and a semi-homogeneous tree comes from

the group SU(2,1) over a local field; these are the only two rank 1 quasi-split groups.

On trees there is an analogue of the theory of Laplacian operators and Poisson kernels on
differentiable manifolds (see [KKM] for real manifolds; [FN91], [Ger80], [Ger84], [Kora], [Par06]

for homogeneous trees and [GL002| for semi-homogeneous trees.)

It is rather surprising that such a simple object as a tree would have so much beautiful
mathematics that Fields medallist Serre would write a book ([Serr80]) about it and Abel prize
winner Langlands wrote a book ([Lan80]) using it. It is even more surprising that we can

generalize the construction of trees to higher dimensions, namely to buildings !

1.3 Euclidean geometry At this point we ask : what is geometry? We cannot answer
this question. But we can give an example of a geometry, namely the euclidean plane geometry.
Most of our students go through high school doing hundreds of very difficult exercises with
complicated diagrams in this geometry without asking what is this geometry - perhaps because
this question is never in any examination and hence unimportant. But in order to understand
modern mathematics this is indeed an important question. Let us give you a sketch of an

answer as given by Euclid himself !

Around 300 B.C., Euclid of Alexandria laid an axiomatic foundation for geometry in his
thirteen books called the Flements. There he proposed certain postulates, which were to be
assumed without proof and then the geometry is the theorems which are deduced by logic from

these postulates.

Euclid begins with 23 definitions of such terms as point, line, plane, circle, angle; in partic-

ular we give definitions 10 and 23:

10. When a straight line set up on a straight line makes the adjacent angles equal to one
another, each of the equal angles is right, and the straight line standing on the other is called

a perpendicular to that on which it stands.

23. Parallel straight lines are straight lines which, being in the same plane and being
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produced indefinitely in both directions, do not meet one another in either direction.

Then Euclid says - let the following be postulated :

To draw a straight line from any point to any point.

To produce a finite straight line continuously in a straight line.
To describe a circle with any centre and distance.

That all right angles are equal to one another.

G W e

That, if a straight line falling on two straight lines make the interior angles on the same side
less than two right angles, the two straight lines, if produced indefinitely, meet on that side on

which are the angles less than the two right angles.

The most famous is the postulate 5 which is called the “parallel postulate”. Modern non-
euclidean geometry was developed in respond to this axiom. For more details on Euclide’s
original book see - T. Heath, The thirteen books of Euclid’s Elements, Dover Publications,
New York, 1956.

Euclid’s postulates have been corrected slightly over the years, since his original list was not
quite complete and had a few logical flaws. Many mathematicians were involved in this process
(Pasch, Peano, Veblen, Hilbert, etc.). For a modern treatment see Hilbert’s famous geometry
book Grundlagen der Geometrie of 1913. In such an axiomatic approach to geometry terms like
point, line, contains, between, and congruent remain undefined and one assumes the postulates
as given and develops geometry by deducing theorems from these postulates. Such method is
the basis of machine proving in computer geometry.

1.4 Incidence geometry
[1] Point-line geometry.

Though incidence geometry does not appear explicitly in our discussions on buildings, it is
still worthwhile to keep it in mind to serve as examples. Instead of giving a full definition of an

incidence geometry (see [Uberll] p.3) we describe a simple case.

A point-line geometry is a triple G = (P, L, ), with
(1) P a nonempty set, whose elements are called points,
(2) L a possibly empty set, disjoint from P, whose elements are called lines,
(3) ¢ a subset of P x L, called the incidence relation, such that for every ¢ € L there are at
least two « € P for which (z,¢) € ¢.

Say two points z1 and x5 are called collinear if there is some line incident with z; and x».

A graph G is a point-line geometry such that
(1) every two distinct points of G are incident with at most one line,

(2) all lines are incident with precisely two points.
Let us move on to a more geometric situation.

A projective plane S is a point-line geometry S such that
(1) every two distinct points are incident with precisely one line,

(2) for any two distinct lines of S, there is a unique point incident with both;
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(3) there exist three noncollinear points.

Theorem 1.1 Every projective plane P with finite number of points such that every line
of P is incident with exactly 2 4+ 1 points is of the form

E

(See [Uber1l] Thm 8.7 p.56).

The projective plane P has :
e seven points {A, B,C, D, E, F,G},
e seven lines {4, B,C}, {A,G,D}, {A, F,E}, {B,G,E}, {B,D,F}, {C,G,F}, {C,D,E} (the
inscribed circle {B, D, F'} is counted as a line);
e every line is incident with exactly 3 points as indicated and

e every pair of points determine a line.
[2] Types.

We extend the point-line geometry above.

Definition 1.2  An incidence geometry over a set I is the data I' = (S,8 5 I,%)

where S is a set, * is a binary reflexive relation on S such that for 7a = 76, a = b & a *b.
We call Ta the type of a, * the incidence and the cardinality |I| the rank of the geometry.

A flag F of T is a set of pairwise incident elements of S. Say F' is of type 7(F'). Two flags
are said to be incident if their union is a flag. Let T be the set of all a € S — F such that a is
incident to F'. Suppose 7(F) = J C I. Then the geometry (T, 7|p : T — I —J,xN(T xT)) over
I — J is called the residue of F in I" and denoted by Res F of I'p. The corank of F' is |[I — J|.

The graph of T' = (S, S 5 I, %) has vertices the set S and edges join the incident pairs. We
say I' is connected if its graph is connected and I' is residually connected if the residue of every

flag of corank > 2 (of corank 1) is connected (nonempty).

For m € U{oo} and m > 2, a geometry of rank 2 is called a generalized m-gon if its graph

has diameter m and girth 2m and if every vertex of the graph belongs to at least two edges.

Let us take a finite set I. A Cozeter matriz on I is an array M = [m;;]; jer with such that

each m;; is either a positive integer or the symbol oo, m;; =mj; > 2 if i # j and m;; = 1.

Definition 1.3  An incidence geometry over I of type M is a residually connected ge-
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ometry over I such that for i,j € I and i # j, the residue of any flag of type I — {i,j} is a
generalized m;j-gon. [Tit81] §1.4.

1.5 Projective spacel!  Projective n space.

For most of us our idea of a space was developed from the moment we open our eyes to this
world. To a student of mathematics since the times of Descartes we know this space as 3 with

a metric measuring the distance between two points x = (x1,x2,x3), ¥ = (Y1, Y2, y3) given by

d(z,y) = /(21— 11)* + (22 — 12) + (23 — y3)*.

It is natural to extend this space by replacing the number 3 by any positive integer n to obtain
an n-dimensional euclidean space and even by infinity to obtain a Hilbert space. We can also
replace the field of real numbers by any field k that we study in an algebra course.

But the next idea : that of a projective space is really very different kind of space. Let us

first give a definition.

Let k be a field and k™*! denotes the n + 1 dimensional vector space over k. A vector or a
point in k" is of the form x = (xq, x1, o, ..., 2,). For z,y € k"1 such that z # (0,0,...,0) #
y we define a relation ~ by : x ~ y if there is a A € k and A\ # 0 such that x; = A\y; for all
0 < i < n. It is easy to check this is an equivalence relation on k"*1\ (0,0,...,0) and the
equivalence containing x # 0 is the line passing through 0 and x. The set of all equivalence
classes is called the projective n-space over the field k and is denoted by " (k).

We can repeat this construction replacing £"*! by any n + 1 dimensional vector space V'
to obtain the projective space of V which will be denoted by V. A ‘point’ of V is then a 1

dimensional subspace of V.

To learn more about the projective space we refer you to Coxeter [Coxe73], Artin [ArtE55)
& [ArtE5T7], Mumford [Mumf81], Griffiths and Harris [GHT7S].

It is said that the projective plane is implicit in the work of the ancient Greek Pappus. Then
around the time of the Renaissance in Europe the idea of projective space comes up in the study
of perspective in painting. The first formalization known is due to G. Desargues, with the book
Brouillon Projet d’une atteinte aux événements des rencontres du Cone avec un Plan (Rough
draft for an essay on the results of taking plane sections of a cone) published in 1639. Finally
it is 19th century Poncelet introduce the line at infinity, M6bius introduced the homogeneous
coordinates, Steiner gave the first axiomatic synthetic treatment and Karl von Staudt was the

first to adopt a fully rigorous approach in his book ” Geometrie der Lage” (1847).
[2] Projective plane.

To see that the point-line geometry P given in the theorem 1.1 is indeed the “usual” pro-
jective plane ? we shall show that P is the projective plane P? (Fy) over the field Fy = {0,1} of

2 elements. We proceed as follows -

(1) Recall that P? (F3) can be defined as the set F3\ {0,0,0} modulo ~. Here the relation ~ is
defined by : (z,y,2) ~ (2',y',2") if there is a A € Fy and A # 0 such that (x,y,2) = A (2/, ¢/, 2').
AsFy = {0,1}, so A can only be = 1. Thus P? (Fy) = F3\{0, 0,0} and so P? (F3) has 7 elements.
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(2) Each point in P2 (Fy) is a line in F3 and every pair of points in P? (Fy) determines a
plane in 3. Each such plane is given by an equation ax + by + cz = 0. Thus the number of
planes is just the number of (a, b, ¢) in F3 modulo ~, i.e. it is the number of elements of P? (F5).
Hence we see that every pair of points in P? (F3) determines a line in P? (F5) which has a total
of 7 lines. (This is just duality.) Moreover every plane in F3 is a two dimensional vector space

over Fy and so it has 3 nonzero elements. This means that each line in P? (F3) has 3 points.
What is most spectacular about this example is that there is a group action.

Let X be a set and G be a group with identity element 15. We say that G acts on X if
there is a map « : G x X — X such that
(HVzeX,allg,z) =uxa;
2)Vxe X,Vag1,92 € G, algr,alge,z)) = alg192,z). We call the map « an action of G on X.

For example we can take X to be the set of all real numbers and G to be the additive group

of all integers and for an integer g and a real number x the action is
a(g,r) =g+

This most important action is the basis of Fourier analysis.

Next let &k be a field and SL3(k) denotes the group of 3 x 3 matrices of determinant 1 with
coefficients in k. For A, B € SL3(k) we write A ~ B if there is a nonzero A € k such that
A = AB. This defines an equivalence relation and the set PSLs(k) of equivalence classes is still

a group under matrix multiplication (check !).
Take [A] € PSL3(k) and we define an action of PSL3(k) on 2(k) by matrix multiplication :

T
a([A], [z]) := [Ax], where [A] € PSLs(k),[x] = |22 |, z; € .
T3

In the case of our projective plane 2(3) this says the simple group PSL3(3) of order 168 acts

on 2(3).

A geometric structure with a group action is indeed the turning point in the history of
geometry after Euclid !

In 1872 Felix Klein published the Erlangen program. One of the themes of this program
says that given a geometric structure S there is a group G such that the properties of S can
be characterized as invariants of G. For example if S is the projective space ™ then we take
G = PSL(n). Conversely given a group G Tits constructs a geometric structure S on which G

acts as transformations preserving its geometric properties; Tits called S a building.
[3] Projective space as an incident geometry.

Definition 1.4 A projective geometry of dimension n is the data PG, = (S, Ik,
{1,2,...,n},*) where S is a set, x is a relation on S and the following conditions hold.
PG1) If ax b, b* c and rk(a) < rk(b) < rk(c), then a x c.
PG2) If rk(a) =1, rk(b) = j < n and a 4b then there exists ¢ satisfying
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)rk(c)=j+1

ii) for every d one has a * d and b x d if and only if ¢ *x d and rk(d) > j + 1.

PG3) If rk(a) = n, rk(b) = j > 1 and a 4b then there exists ¢ satisfying

i)rk(c)=4—-1

ii) for every d one has d x a and d x b if and only if d * ¢ and rk(d) < j — 1.

PG4) If rk(a) = 2 then there exists at least 3 objects by, ba, by such that rk(b;) = 1 and b; x a.

A n dimensional projective geometry is an incident geometry over the set {1,2,...,n}.

If V is an n + 1 dimensional vector space over a division ring, we let S to be the set of all
non-empty proper subspaces of V', rk is just the dimension and * is the inclusion C. Then this
is an n dimensional projective geometry; conversely we have the following theorem.

Theorem 1.5 Let n > 3. Then any n dimensional projective geometry is of the form V'

for some n + 1 dimensional vector space V' over some division ring.

This is called the existence of coordinates theorem for projective geometry; (see [Tit84] Thm
I.1.1 p.2; [Sei06] Chap 9 §1 p.166) this should be distinguished from the fundamental theorem for
projectivities in projective geometry (see [Sei06] Chap 1 §14 p.25). A 2 dimensional projective
geometry is called a projective plane. Not all projective planes come from vector spaces; those

which do not are called non-Desarguesian.
Theorem 1.6  An incidence geometry of type A,, is an n-dimensional projective geometry.

See [Tit84] Thm I.1.1 p.6; [Tit81] §6.1.5, Prop 6 p. 540. The Coxeter matrix A, is n X n
matrix (mij) with m;; = 1, mi2 = Mpn-1 = 3, mMii—1 = My 41 = 3 for 2 < 1 <n-— 1 and the
rest of entries = 2. For example

1 3 2 2

31 3 2
Ay =

2 31 3

2 2 31

This theorem marks the beginning of the theory of buildings - see [Tit62],[Tit81].

Before we leave let us point you to two books on incidence geometry - [Bruyl16], [Uberll];
for example you can try to read Chapter 1 of [Uberl1].

§2. Preliminaries

We need to take a digression. Coxeter groups are the basic ingredients in the construction
of buildings. Our references are [Bour81], [Hum90] and [Hum?72].

2.1 Coxeter system Let I be a set. A Coxeter matrix is an array M = [m;;]; jer with
such that each my; is either a positive integer or the symbol oo, m;; = mj; > 2 if ¢ # j and
mi; = 1.

The Coxeter graph (or diagram) of a Coxeter matrix [m;;] is the undirected graph IT with

vertex set I and edge set consisting of all unordered pairs {7, j} such that m;; > 3 (including
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m;; = 00) together with the labeling which assigns the label m;; to each edge {i,j}. This
means that we join vertices 7 and j by an edge labelled m;; whenever this number (co allowed)
is at least 3. If distinct vertices ¢ and j are not joined, it is then understood that m;; = 2. As a
simplifying convention, the label m;; = 3 may be omitted. A Coxeter graph is called irreducible
if its underlying graph is connected. The rank of a Coxeter graph is the cardinality of its vertex
set I.

Given a Coxeter graph IT with Coxeter matrix M, the Coxeter group of type II (or M) is

the group W having a set of generators S = {w; : i € I'}, subject only to relations of the form
(wiwj)m” =1, i,j S I, mij 75 o0
where the array M = [m;;]; jer is the given Coxeter matrix.

Let f — w; denote the unique extension of the map 7 — w; to a homomorphism from the
free monoid with generators I to W (wyp = 1). ([Wei03] Def 2.2 p.9)

The pair (W, M) is called a Coxeter system of type II ( In [Bour81] and [Hum90] the pair
(W, S) is called a Coxeter system).

2.2 Finite reflection group By a real euclidean space we mean a finite dimensional
vector space V over the field of real numbers endowed with a positive definite symmetric bilinear
form (e,e). A reflection is a linear map s: V' — V which sends some nonzero vector o to —«
while fixing pointwise the hyperplane

Hy={\eV:(\a) =0}

orthogonal to a. Let us write s, for this s. Then
2\ @)

aA = A
’ (@, )

This is explained by the following diagram in which we identify V' with its dual space V* using
the given bilinear form (e, ) so that the hyperplane H, appears as the plane perpendicular to

«a. Then 82;0‘ is the projection of A\ onto the line containing the vector o and thus s, A\ as
given by the above formula is the ‘mirror’ image of A obtained by reflecting A using H, as the

‘mirror’ (= reflecting plane).

)
(@) "

' 20,9)
T @) “
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A finite reflection group is a finite group generated by reflections; it is a finite subgroup

of of the orthogonal group O(V (e, e)).

Theorem 2.1 A Coxeter group W is finite if and only if W is a finite reflection group.
([Hum90] §6.4, p.133)

By a root system we mean a subset ® of a real euclidean space V satisfying the conditions:
(RO) @ is finite, spans V', and does not contain 0.

RD) 2na={a,—a}, Vaec d.

(R2) 54(®) = @ for all « € P.
(
(

R3) 12:4) € for all o, 3 € ©.

[Hum'2] §9.2, p.42; it is also called a crystallographic root system in [Hum90] §2.9, p.39 ) The
group W(®) generated by all reflections s, (o € ®) is known as the Weyl group of &. W is
finite ([Hum?72] §9.2, p.43) and so it is a finite Coxeter group. We sometimes call a root system

a Lie root system.

Theorem 2.2 If ® is a root system in V' then there is a subset T of ® (called a base)
such that
(B1) T is a basis of V,
(B2) each root # € ® can be written as 3 = ) .y maa with integers m, and all m, are
nonnegative or all nonpositive. ([Hum90] §10.1, p.48) This means that ® = &+ I —®*, where
®T consists of those roots 8 = ZQET Moo With ma > 0. @7 is called the set of positive roots.
An element in T is called a simple root.

Choose an ordering of the simple roots T = {a1,...az}. Set ¢;; = % The integer
I

¢;jcji takes only the values 0,1, 2,3 ([Hum72] §9.4). Define the Dynkin diagram as the graph

with simple roots as vertices, o; is joined to a; by c¢;;c;; edges, and whenever a double or triple

edge occurs, we add an arrow pointing to the shorter of the two roots.

Say a root system is irreducible if it cannot be partitioned into two proper, orthogonal
subsets. Call the number £ of elements in a base T of ® the rank of ®.

Theorem 2.3 If ® is an irreducible Lie root system of rank ¢, its Dynkin diagram is one

of the following (¢ vertices in each case):

Ay 0] —— 02 03+ +0p—1 Oy

By 0] —— 03 03+ ++0p_1 =——=> Oy

Cy 0] —— 02 03+ +0p_1 <—= 0y

D, Or—1
0] ——— 02 -:0p_3 0p—2 —
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EG 02
o1 O3 O4 O5 O6
E7 02
o1 °3 O4 o5 C6 o7
Eg 02
o1 o3 O4 O5 C6 o7 o8
F4 o1 09 ———> 03 Oy

Gy 0] <= 02

Note : the Coxeter graph of a finite irreducible Coxeter group are different, see - [Bour81] Thm
1 no. 4.1, p.193.

To give some feelings about root system we construct an example - the root system of
type As. In the diagram below on the left hand side we have a unit circle and the angle
£AOB = 27/3. On the right the vector oy (resp. az) is OA (resp. OB.)

A,

B a; arta;

0 A= (1,0)

The simple roots are T = {1, as}. The positive roots are ®+ = {a1, 2,1 + as}. The
root system As is
b= {:I:Ozl, tag, (a1 + OZQ)}.

In the next diagram we show a root system of type C5. In this diagram «; and oy + as

forms the sides of a unit square.
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(6%} (03] + (6% 20[1 + [6)
o)

—Q aq

—2a1 — Qg —Qp — Q9 — Q9

The simple roots are T = {ay, as}. The positive roots are T = {a, as, a1 + g, 201 +as}.

The root system As is

o = {:l:Oél,Zl:OéQ,:l:(Oél + Oé2),:|:(20[1 + O[Q)}.

There are exactly 3 types of irreducible root systems in the plane, they are Ay, Co and Gs.
The root system of type Gs is :

{:I:al, :|:Ck2, :I:(a1 + Ckz), :l:(Oél + 2&2), :I:(a1 + 30[2) :l: (20[1 + 30[2)}.

Perhaps at this point it may be good to know a bit more about root systems. If you are
familiar with root systems you will find it easier to get comfortable with buildings. Chapter III
of Humphreys [Hum72] has a self contained account, you do not have read chapters I and II,

just go to chapter III. And if you have more time you can also try [Hum90] Chapters 1,4,5.
2.3 Affine reflection group

Given a Coxeter graph II of finite rank with Coxeter matrix M. Then the symmetric matrix
M defines a bilinear form z!My (z,y €™). We say M (or II) is positive definite if ‘Mz > 0
for all z # 0, positive semi-definite if Mz > 0 for all x.

Theorem 2.4 A connected Coxeter graph of finite rank which is positive semidefinite but

not positive definite is isomorphic to one of the following graphs.

No two of the above graphs are isomorphic. ([Bour81] no 4.3 Thm 4 p.199; [Hum90] p.34,
96, 152)

Al o i e}

Ag(0 > 2,041 vertices) .o

EQ (¢]
By(£>3,0+1 vertices) o
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Co(6>3,0+1 0—2 0 o . o ot o
Dy(0 > 4,0 +1 vertices) o o
O/ \O
Es o
(\)
\
o o o o o
Er o
o o o o o o o
Eg o
(¢] (¢] o (¢] (¢] [¢] (¢] (¢]
F, o ° o—2 o °
Gy, o o5 o

Let V be a a real euclidean space. We let T'(V') be the group of all translations on V; an
element of T'(V) is of the form

tA) = Atp, Apev.

For a linear isomorphism g € GL(V), we have gt(A\)g~! = t(g\). Thus we can introduce
the affine group Aff(V) := GL(V) x T(V) as a semidirect product. An reflection relative to a
hyperplane which do not necessarily pass through the origin is in Aff(V). For a formal treatment

of affine spaces and affine transformation see [Port69] Chap 4.

Now we take a Lie root system ® in a real euclidean space V. Introduce the notation

av =2a/(a, ).
A root @ € @ and an integer k define an affine hyperplane
Hyp:={ eV:(\a) =k}

Note that H, is Ha,o translated by gav. Define the corresponding affine reflection with
respect to H,  as follows:
Sa kA=A — (N, @) —k)aV.
Clearly s, 1 fixes H, 1 pointwise.
We define the affine Weyl group W,g(®) to be the subgroup of Aff(V) generated by all

affine reflections s, where o € @, k €.

Let us assume that @ is irreducible, then there is a unique highest root & (which is long

if there are two root lengths), this means that for all positive roots 3, & — ( is a nonnegative
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-linear combination of simple roots ([Bour81] Chap VI, no 1.8 Prop 25). Let be the set of all

connected components of V'\ | H, 1. Each element of is called a chamber or an alcove.

aced ke
For example

o={AeV:(\a)<1&0<Na)VaeT}
is an alcove.

Theorem 2.5 Given a base T of an irreducible Lie root system ®. Let S = {sq,0 :
a € THU{ss,1}. Then the affine Weyl group W (®) is a Coxeter group having S as a set of
generators. Moreover the Coxeter graph of this Coxeter group is one of those in theorem 2.4.

([Hum90] §4.7 p.95; §6.5, p.133; [Bour81] Chap VI §4.3)

We define an affine Coxeter group as a Coxeter group associated with a Coxeter graph
in theorem 2.4 or a direct product of such groups ([Wei09] p. 1).

§3. Chamber Systems

We hope that the preceding paragraphs has given you a warm-up exercise to prepare you
for the next set of definitions/axioms.

We give a definition of a building as a chamber system.

3.1 Edge-colored graphs  An edge-colored graph is a graph A = (V| E) endowed with

a surjective map E — I. We think of elements of I as colors; but we call I the indez set of A.

A change of terminology. Suppose A = (V, E) is an edge-colored graph, we sometimes refer to
the elements of V' as chambers rather than vertices and we will write A in place of V. We

write z ~; y for the statement ‘{x,y} is in F and has color i’ and we say x and y are i-adjacent.

Given z,y € A. A gallery of length k from z to y is a sequence v = (z = ug, ..., ur = y)
of k + 1 chambers such that

uj1 ~i; U, 1 <3<k

i

and the type of v is the word 41 - - - i (in the free monoid generated by I). For J C I, a J-gallery
is a gallery whose type is in the free monoid generated by J. We say A is connected (resp.

J-connected) if for any two chambers x, y there exists a gallery (resp. a J-gallery) from « to y.

Suppose that A is a connected edge-colored graph with index set I and let J be a subset
of I. A J-residue of A is a connected component of the graph obtained from A by deleting
all the edges whose color is not in J (but without deleting any vertices). The type of a residue
(including A itself) is the set of colors that appear on its edges (i.e. its index set) and the rank

of a residue is the cardinality of its type. A i-panel is a residue of rank 1 of type {i}.

A chamber system (A, I) is a connected edge-colored graph A with index set I such that
all the panels are complete graphs having at least two chambers. A chamber system is called
thick (respectively, thin) if all its panels contain at least three chambers (respectively, exactly

two chambers).
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A homomorphism of chamber system is (A 2 A’;T % I') such that for all i € I, p takes
each i-panel of A to a o(i)-panel of A’. We say p is special if I = I’ and o is the identity map.

Example. Let IT be a Coxeter graph with vertex set I and let (W, r) be the Coxeter system of
type II. We define 1 to be the edge-colored graph with the elements of W as chambers and
we set
z~yyforiel &aly=r.

Since 7; # 1, x ~; y = x #y. 77 = 1 = the relation ~; is symmetric. Since r; # r; whenever
i # j, the color of an edge is well defined. Xy is a thin chamber system, i.e. each chamber is
i-adjacent to exactly one chamber for each color i € I. Moreover for any x € ¥y and any f in
the free monoid generated by I, there is a unique gallery of type f in Xy beginning at = and
ends in ary ([Wei03] Prop 2.5 p.12).

A Coxeter chamber system of type II is an edge-colored graph isomorphic to Xyy.
3.2 Buildings
[1] Let M be the free monoid on I. For ¢ # j such that m;; # co put
o (ig)™is/? if m;; is even
pli-) = {j(z‘j)(mijl)/2 if my; is odd
An elementary homotopy is a transformation of a word of the form fp(i,7)g into the word
fp(4,7)g; two words f, g are homotopic if f can be transformed into g by a sequence of elemen-

tary homotopies. A word in M; is called reduced (with respect to II) if it is not homotopic (as
defined in 4.1 of [37]) to a word of the form fiig for some i € I and some f,g € Mj.

[2] Let II be a Coxeter graph with vertex set I and let (W, r) be the Coxeter system of type II.
A building of type II is a pair (A, ), where A is a chamber system whose index set is I and
0 : A x A — W has the property that for each reduced word f in the free monoid generated by
I and for each ordered pair (z,y) of chambers, 6(z,y) = 7y iff there is a gallery in A of type f
from x to y. ¢ is called the Weyl distance function of A. ([Wei03] Def 7.1.)

The Coxeter chamber system Yy is the only (up to special isomorphism) thin building of
type II ([Wei03] 8.11).

A spherical building is a building whose Coxeter group is finite; and an affine building

is a building whose Coxeter group is affine.

Affine Coxeter groups can be characterized as groups generated by reflections of an affine
space ([Bour81] Chap VI, §4.3).

[3] Let (A,d), (A’,d") be two buildings of the same type (and thus having the same index set
I and the same Coxeter group W). A map 7 from a subset X of A to A’ will be called an

isometry if for all z,y € X we have

&' (mx, my) = 8(,y).

[4] Let A be a building of type II and let ¥ be a Coxeter chamber system of type II. An

apartment is the image of a special isomorphism from ¥ into A. Apartments have the following
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properties:

(1) Every isometry from a subset of ¥ to A extends to a special isomorphism from ¥ to A
([Wei03] 8.2,8.5).

(2) Every two chambers lie in an apartment ([Wei03] 8.6).

(3) Apartments are convex ([Wei03] 8.9).

[5] Let A be a chamber system whose index set is the vertex set I of the Coxeter diagram II
and let be a collection of subgraphs isomorphic to the Coxeter chamber system 1. Suppose
that the following hold:

(1) For every two chambers x and y of A, there exists an element of that contains them both.
(2) For every two elements A, A’ € and for every pair x, y of chambers in AN A’, there exists
a special isomorphism A — A’ that fixes x and y.

(3) For every two elements A, A’ €, for every chamber x in AN A’ and for every panel P such
that PN A and PN A’ are both non-empty, there exists a special isomorphism A — A’ that
fixes x and maps PN A to PN A’

Then A is a building of type IT ([Ron92] 3.11; [Wei09] 29.35).

84. Chamber Complexes

We give in this section a definition of buildings as chamber complexes.
4.1 Complexes

[1] A partially ordered set is a set S together with a binary relation a < b satisfying the
following conditions:

1) a<a.

2) a < b and b < a implies that a = b.

3) a < band b < ¢ implies that a < c.

An element s € S is a lower bound of a subset A of S if s < a for every a € A. The element
s is a greatest lower bound or inf of A if s is a lower bound of A and ¢ < s for every lower
bound ¢ of A. The greatest lower bound of {a, b} is denoted by a A b.

Example. Take any set T'. Let S be the set of all subsets of T'. For subsets A, B of T, we take
the relation A < B to mean A C B.

[2] Consider a set © endowed with partial ordering C. © is called a simplex if © is isomorphic

to the set of all subsets of some set partially ordered by inclusion.

[3] We say that © is a complex if:

(a) VA€O, theset {Be©O:BC A} forms a simplex,

(b) V A, B € ©,3 a greatest lower bound AA B in ©. A complex O contains a unique minimal
set which is denoted by 0.

[4] A subset ©' of © with induced partial ordering is called a subcomplez if V A € ©' B € ©
with B C A we have B € ©'.
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For A € O, we define the star of A as

StA={Bec©:BDA}.

[5] For A € O, we define the RankA to be the number of B such that B is minimal with respect
to the properties B C A, B # 0.

Thus the set of elements B with B C A is isomorphic to the set of all subsets of a set with
cardinality RankA.

For A C B the codimension is defined to be
codimBA = rankStAB.
In particular

codimgA =0 A= B,
codimpA =1 A#4#B& X :Ac X C B.

4.2 Chamber Complex
[1] A complex O is called a chamber complex if
(a) every element of O is contained in a maximal element;

(b) given any 2 maximal elements C,C’ of ©® 3 a finite sequence
C=0CyC,Co...,Cp, =C"
of elements of © such that
codimg,_, (Ci—1 N C;) = codime, (Ci—1 NC;) < 1fori=1,---,m

Each C; is a maximal element.
An maximal element of a chamber complex will be called a chamber.
A sequence of chambers satisfying the conditions in (b) will be called a gallery.
Two chambers C,C” are said to be adjacent if codimc(C N C’) =1 = codime/ (CNC').

A chamber complex is said to be thin if every element of codimension 1 is contained in
exactly 2 chambers. We say a chamber complex is thick if every element of codimension 1 is

contained in at least 3 chambers.

[2] A map a: © — O is called a morphism of chamber complexes if

(a) C € © is a chamber = «(C) is a chamber in ©’;

(b) for any chamber C' € O, « induces an isomorphism between simplexes determined by C
and «(C).

[3] Let ® be a Lie root system in an euclidean space V; let T = {«a; : i € I'} be a base of & and
W = W(®) be the Weyl group of ®.
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For any subset J C I let W; be the subgroup of W generated by all s, for j € J.

Let (W (®), T) be the partially ordered set {wWj; : w € W, J C I} ordered by the opposite
of inclusion relation, namely say B < A exactly when B D A as subsets of W, in which case,

say B is a face of A.

Theorem 4.1 X (W(®),T) is a thin chamber complex. The elements of W are chambers

and w,ws,, are adjacent.
([Car72] 15.4, p.289.)
There is a more ‘geometric’ way to see (W (®), T).

We introduce an equivalence relation on V' by setting x ~ y if, for each hyperplane H,,
a € @, the points z,y are either both in H,, or both not in H, but on the same side H,. Let
be the set of ~-equivalence classes. has partial order < defined by Cy < Cs if C is contained

in the closure of Cs.

For w € W,w transforms each reflecting hyperplane into another, so for C € C,w(C) is

defined and is in C. In his way W acts on C.

The connected components of

v\ | H.

aedt

are called chambers.
0 = Naca+ H, where HI ={A eV : () a) >0}

is called the fundamental chamber. More generally, for each J C I, put

{A:(A,a)O fora € J
J:

A (A o) > 0fora e I\ J

If J has only one element, then ; lie on one of the hyperplanes bounding 3 and is called a panel.

e
Exant €A, ey

S

Theorem 4.2  The map w(y) — wWj is a bijection from to (W (®P),T) giving an
isomorphism of partially ordered sets and this put a structure of a thin chamber complex on .

([Car72] thm 15.4.1, p.288.) We call or (W (®),T) a Coxeter complex.

4.3 Building A building is a pair (2, A) where  is a chamber complex and A is a set

of subcomplexes, called apartments, satisfying the following axioms:
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B1. Q is a thick chamber complex.
B2. Apartments in A are thin chamber complexes.

B3. Given any 2 chambers C,C’ in (Q, there exists an apartment A € A such that C €
A0 e A

B4. If C, C" are elements of € which are both contained in each of the apartments A, A’ € A

then there exists an isomorphism between A, A’ leaving invariant C,C’ and all their faces.

See [Tit74] §3.1. For discussions of the equivalence of definitions of buildings as chamber
systems and chamber complexes see [Scha95]; [Tit74] 3.7; [Tit81] 2.2.

§5. Conclusion

The Erlangen program was published by Felix Klein in 1872 as Vergleichende Betrachtungen
dber neuere geometrische Forschungen. It is named after the University Erlangen-Niirnberg,
where Klein worked. One of the themes of this program says that given a geometric structure
S there is a group G such that the properties of S can be characterized as invariants of G. For
example if S is the projective space ™ then we take G = PGL(n). Conversely given a group
G Tits constructs a geometric structure S on which G acts as transformations preserving its

geometric properties; Tits called S a building. See [JiP15] for further discussions.

A real connected semisimple Lie group G with finite center has an Iwasawa decomposition
G = KAN where K is a maximal compact subgroup of G. This decomposition is very useful
for the study of the classical symmetric spaces represented as a quotient K\G. If G is now the
group of rational points of a connected semisimple linear algebraic group over a p-adic local
field, then theory of building was used to give a proof that G also has an Iwasawa decomposition
G = KAN where K is a suitable choice of a maximal compact subgroup of G. The question
was then asked : what is the analogue of he classical symmetric space “K\G” in the p-adic

case? The answer given by Tits was a “building”.

This paper is written for students in China and so it is not for experts who know everything
anyway, nor is it for students in Beijing and Shanghai where they can learn from experts
visiting or in residence. This set of notes aims to be an illustration of buildings for students
who live in those parts of China where they may not find a teacher in building theory or
where access to printed materials on building is difficult. We assume that such a student wants
a quick introduction so as to learn how to use this theory and may spend the time to read
the originals later to get a firmer grasp. We have tried to start from almost no requirements
on background but from the moment an algebraic group enters heavy machinery becomes
unavoidable. Fortunately linear algebraic groups were once taught in some places in China.

Had we found a journal to publish it in Chinese this would have been written in Chinese.

The paper has four chapters. The first chapter gives a description of buildings as an incidence
geometry with a group action - this is elementary. The second chapter deals with the basic
examples of buildings - to read this chapter you need to know some Lie algebra. The next

chapter is based on the theory of linear algebraic groups and so this is more difficult. The
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final chapter is the most demanding one on your background - here we use algebraic and rigid
geometry.

This is not a survey and yet it goes very fast and deep on the subjects we have selected.
Let us explain. To the creator of the theory of building - Jacques Tits (Abel Prize 2008),
the first thing about a building is that it is a ‘geometry’, in particular an incidence geometry.
Now in China the moment the word geometry is mentioned people think that you are talking
about differential geometry, in particular theory of partial differential equations on manifolds.
But that is NOT geometry, that is properties of differential equations. ‘Geometry’ is about
the nature of space. Just as to Einstein the theory of general relativity is about the nature of
space-time, to Tits the theory of building is about the nature of space/group. So in the first
chapter we try to introduce the idea of a ‘geometry’ through the Euclidean plane geometry. We
give a short account on incidence geometry and projective space based on lectures of Tits which
may not be easily available. Then we quickly jump to the axioms of a building hoping that
the analogy with Euclidean plane geometry and projective geometry would lead the reader to
attempt to conceive a building as a geometry - this requires some efforts. We shall return to this
point later in the paper. We give two definitions of buildings - one as a chamber system following

the modern expositions of Weiss [Wei03], [Wei09]; and the other as a chamber complex.

In the second chapter we present Tits discovery - how to get a ‘geometry’ out of a group.
This construction is now called a Tits system. We quickly cover this and then we illustrate this
construction with matrix groups - to be specific with the Chevalley groups. The structure theory
of linear algebraic group was first introduced into China by Lai in 1979. Since then it soon was
no longer taught and nowadays this theory is unknown to most algebra graduate students in
China. So after a short introduction the students will face another jump - an illustration of
the structure of semisimple linear algebraic group through classical Chevalley groups. We shall
discuss the buildings associated to these Chevalley groups in two cases, namely over a finite
field and over a local field. These corresponds to the two major type of buildings, namely the
spherical buildings and the affine buildings.

Any finite extension of the field of p-adic numbers is a local field - a subject studied in
books on algebraic number theory. In the third chapter we shall use the structure theory of
reductive groups over local fields to present the construction of affine buildings. This is really
not a theory that is an end in itself, rather it is the beginning of an important and beautiful
theory - the representation theory of p-adic Lie groups. All known fundamental results in the
representation theory of Lie groups are based on detail knowledge of the structure of these
groups, the p-adic case is no different. The theory of Bruhat-Tits building provides us with
such detail information. At the end of this chapter we will point the students to some work
done in the recent years using the theory of Bruhat-Tits buildings and the theory of arithmetic
differential equations (D-modules) to prove new results on the representations of p-adic Lie

groups. We end this chapter with a revision note on the multifarious Hecke algebras.

The fourth chapter will be on p-adic geometry of homogeneous space constructed using
buildings - extending the work first pioneered by Mumford (Fields Medal 1974, Shaw Prize
2006, Wolf Prize 2008)[Mumf72] and Drinfel’d ( Fields Medal 1990, Wolf Prize 2018) [Drin76].
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A building is a combinatorial object with a “metric” given by a Coxeter system. When the
Coxeter group of the Coxeter system is finite we say that it is a spherical building and if the
Coxeter group is infinite then it is called an affine (or an euclidean) building. The simplest
building is a tree, see the book ([Serr80]) by Serre (Fields Medal 1954, Wolf Prize 2000, Abel
Prize 2003).

From a semisimple linear algebraic groups G defined over a field F we construct a building
G- When F is a finite field ¢ is a spherical building; when F' is a local field it is an affine
building. ¢ provides important information on the structure of G, and hence they play an
important role in the representation theory of G, for this reason we encourage students to learn

some properties of buildings.

There are at least two pieces of mathematics in which theory of building plays a key role -
(1) Klein’s Erlangen program for geometry,

(2) the combinatorial structure of reductive algebraic groups.

Langlands (Wolf Prize 1996, Shaw Prize 2007, Abel Prize 2018) placed reductive groups
at the center of his theory of L-functions. To make calculations over local fields one needs to
use the the combinatorial structure of reductive groups over local fields. As a first example
is his calculation of orbital integrals of GL(2) using building. Though the basic result in this
direction - the so called Fundamental lemma - was proved by Ngo Bau Chau (Fields Medal
2010) by very different methods, recent unfinished work on representation of reductive groups
over p-adic fields in p-adic topological spaces made critical use of theory of buildings. Thus

revive much interests in this theory.

There are indeed many books on theory of building for example [Bro89], [Car72], [Gar97],
[FNO91], [Land96], [Ron89], [Serr80], [Tit74], [TW02], [Wei03], [Wei09], [Woes00]. [Ji06], [Ron92],
[Scha95] are excellent survey papers. But here we deal with the more practical matters such as

definitions, examples, tables for computation and so serve a different purpose.

The first difficulty about learning this theory is that the first papers [BrT67], [Tit79] contains
almost no proofs. The second difficulty is that the papers of Bruhat and Tits from 1972 to
1987 are very long, they are written sometimes in very general terms which does not help the
uninitiated students to understand and indeed they had some unexpected mistakes in their
original ideas of proof (after 1972, the next paper was published 12 years later, but still did not
complete the proofs of claims in 1979). At the moment there are a few books covering either
the pure combinatorics or scratching the surface of the affine theory so a tool box summary can
still be a useful guide. Even though what we have presented is public knowledge well known
to all experts, but our organization and comments still have its novelty and could be useful to
those students on their own. After we have finished the paper, looking back we have to admit
that for a student to learn everything here without a teacher will be a difficult task that requires

a lot patience and perseverance. A diligent student will have to invent many proofs!

We come to the end of the first chapter. We hope we have given you some ideas of a building
as a geometry. At this moment the definitions are still rather abstract. In the next part we

shall illustrate how these definitions work by constructing some examples of buildings. For more
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information on graphs consult [BM]. If you want more adventures in “combinatorial geometry”
you can read this paper of the famous Gelfand [GS87] or look at [BGW], [Bjo]. But this is

really a good time to read a book on building, we recommend the book [Wei03] of Weiss - it is

short only 130 pages, you do not have to know anything and can begin now!
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