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Construction of Self-dual Codes over Fp + vFp
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Abstract: In this paper, we give an explicit construction for self-dual codes over Fp +

vFp(v2 = v) and determine all the self-dual codes over Fp + vFp by using self-dual codes

over finite field Fp, where p is a prime.
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§1. Introduction

Codes over finite rings were initiated in the early 1970s [2-3]. They have received much
attention after the significant discovery made in the landmark paper [15], which showed that
certain good nonlinear binary codes could be found as images of linear codes over Z4 under
the Gray map. Most of the studies are concentrated on the situation in which the ground
rings associated with codes are finite chain rings(see, for example, [4, 7, 22, 24-25, 30, 32, 35]).
However, Wood proved that finite Frobenius rings are suitable for coding alphabets [31], which
leads to many works on non-chain rings. In recent years, linear codes over the ring Fp+vFp with
v2 = v and p being a prime, which is not a chain ring but a Frobenius ring, have been considered.
In [41] Zhu et al. gave some results about cyclic codes over F2 + vF2, who showed that cyclic
codes over the ring are principally generated. In [38], G. Zhang et al. studied cyclic codes with
complementary duals over Fp + vFp. In [40] Zhu et al. studied (1− 2v)-constacyclic codes over
Fp + vFp, where p is an odd prime. They determined the image of a (1− 2v)-constacyclic code
over Fp + vFp under the Gray map and the structures of such constacyclic codes over Fp + vFp.
In [34], G. Zhang studied constacyclic codes over Fp + vFp, and characterized the generator
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polynomials of all constacyclic codes over Fp + vFp and their dual codes, which generalized the
results in [40]. On the other hand, self-dual codes play a very significant role in coding theory
both from practical and from theoretical point of view. A vast number of papers have been
devoted to the study of self-dual codes, e.g. see ([1], [5]-[6], [8]-[14], [16]-[21], [23], [26]-[27], [29],
[33], [37], [39]).

In this paper, we explore the explicit construction of self-dual codes over Fp + vFp and
determine all the self-dual codes over Fp + vFp in terms of self-dual codes over Fp. Unlike
the technique used in the mentioned papers, we give the characterization of the torsion codes
associated with the linear codes and their duals over Fp +vFp. They are used as a tool to study
self-dual codes over Fp + vFp and their explicit construction.

§2. Preliminaries

Let Fp be a finite field with p elements, where p is a prime. Throughout this paper, let R be
the commutative ring Fp + vFp = {a + vb|a, b ∈ Fp}, where v2 = v. The ring R is a semi-local
ring with two maximal ideals given by 〈v〉 = {av|a ∈ Fp} and 〈1 − v〉 = {a(1 − v)|a ∈ Fp}. It
is easy to verify that both R/〈v〉 and R/〈1 − v〉 are isomorphic to Fp. Any element of R can
be expressed as c = a + vb, where a, b ∈ Fp. The Gray map Φ from R to Fp ⊕ Fp is given by
Φ(c) = (a, a + b), thus Φ is a ring isomorphism, which means that R is isomorphic to the ring
Fp ⊕ Fp. Therefore R is a finite Frobenius ring.

A linear code of length n over R is an R-submodule of Rn, where

Rn = {(r1, r2, · · · , rn) | ri ∈ R, ∀1 ≤ i ≤ n}.

For x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) ∈ Rn, the inner product x · y of x, y is defined
as x · y = x1y1 + x2y2 + · · · + xnyn. Let C be a linear code of length n over R. We define
C⊥ = {x ∈ Rn | x · c = 0,∀c ∈ C} to be the orthogonal code of C, which is called the dual code
of C. Note that C⊥ is also a linear code. If C = C⊥, then C is called self-dual.

Note that any element c of Rn can be expressed as c = a + vb, where a, b ∈ Fn
p . Define C1

and C2 as follows:

C1 = {a ∈ Fn
p |a + vb ∈ C, for some b ∈ Fn

p }; C2 = {a + b ∈ Fn
p |a + vb ∈ C}.

Obviously, C1 and C2 are linear codes over Fp.

We know that the ring R has two maximal ideals 〈v〉 and 〈1 − v〉. Their residue fields are
both Fp. Thus we have two canonical projections defined as follows:

R = Fp + vFp −→ R/〈1− v〉 = Fp : r + vq 7−→ r + q;

and
R = Fp + vFp −→ R/〈v〉 = Fp : r + vq 7−→ r.

We simple denote these two projections by “ ̂ ” and “ − ”, respectively. Denote by r̂ and r

the images of an element r ∈ R under these two projections, respectively.
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For a code C of length n over R, let a ∈ R. The submodule quotient is a linear code of
length n over R, defined as follows:

(C : a) = {x ∈ Rn|ax ∈ C}.

The codes (̂C : v) and (C : (1− v)) over the field Fp is called the torsion codes associated with
the code C over the ring R.

§3. Self-dual Codes Over Fp + vFp

In this section we will determine all the self-dual codes over R in terms of those over Fp.
With notation as above, the following results are very useful.

lemma 3.1[36] Let C be a linear code of length n over R. Then

(1) (̂C : v) = C2;

(2) (C : (1− v)) = C1;

(3) ((̂C : v))⊥ = ̂(C⊥ : v); ((C : (1− v)))⊥ = (C⊥ : (1− v)).

Let A,B be the codes over R. We denote that A⊕B = {a + b|a ∈ A, b ∈ B}.
lemma 3.2[36] Let C be a linear code of length n over R. Then C can be uniquely

expressed as C = vC2 ⊕ (1− v)C1. Moreover, we also have C⊥ = vC⊥2 ⊕ (1− v)C⊥1 .

Theorem 3.3 Let C be a linear code of length n over R. Then C is a self-dual code if
and only if C1 and C2 are both self-dual codes.

Proof (=⇒) Let C be a self-dual code. Then by Lemma 3.1 we have that

C⊥1 = ((C : (1− v))⊥ = (C⊥ : (1− v)) = (C : (1− v)) = C1

and
C⊥2 = ((̂C : v))⊥ = ̂(C⊥ : v) = (̂C : v) = C2,

that is, C1 and C2 are both self-dual codes.

(⇐=) Let C1 and C2 are both self-dual codes. Then by Lemma 3.2

C⊥ = vC⊥2 ⊕ (1− v)C⊥1 = vC2 ⊕ (1− v)C1 = C.

So C is self-dual.

Remark 3.4 According to Lemma 3.2 and Theorem 3.3, it is clear that a self-dual code
over R can be explicitly expressed by some two self-dual codes over Fp. We need to study the
converse part, which is a crucial and interesting step.
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§4. Construction for Self-dual Codes Over Fp + vFp

The construction of self-dual codes over R depends on the following theorem.

Theorem 4.1 Suppose that C1 and C2 are linear codes of length n over Fp with generator
matrices G1 and G2, respectively. Let l1 and l2 be the dimensions of C1 and C2, respectively.
Then the linear code C over R generated by the matrix G satisfies

(̂C : v) = C2; (C : (1− v)) = C1

and C = vC2 ⊕ (1− v)C1, where

G =





(
vG2

0

)
+ (1− v)G1, if l1 > l2;

vG2 +
(

(1− v)G1

0

)
, if l1 < l2;

vG2 + (1− v)G1, if l1 = l2.

Proof We only prove the case l1 > l2, as the proof of the other cases is similar to this
one. Assume that

G1 =




g11

g12
...

g1l1


 ;G2 =




g21

g22
...

g2l2


 ,

where g1i(∀1 ≤ i ≤ l1) and g2j(∀1 ≤ j ≤ l2) are row vectors of G1 and G2, respectively. Then

G =




vg21 + (1− v)g11

vg22 + (1− v)g12

...
vg2l2 + (1− v)g1l2

(1− v)g1,l2+1

...
(1− v)g1l1




.

Since vg2i + (1− v)g1i ∈ C, i.e., g1i + v(g2i − g1i) ∈ C, for 1 ≤ i ≤ l2, by Lemma 3.1 we have

g2i = g1i + (g2i − g1i) ∈ (̂C : v),

for 1 ≤ i ≤ l2. Therefore C2 ⊆ (̂C : v).

Let y ∈ (̂C : v), then there exists x ∈ (C : v) such that y = x̂. Since vx ∈ C, we may assume
that

vx =
l2∑

i=1

(ai + vsi)[vg2i + (1− v)g1i] +
l1∑

l2+1

(ai + vsi)[(1− v)g1i],
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where ai + vsi ∈ Fp + vFp, for 1 ≤ i ≤ l1. So

vx = v2x = v · vx = v

l2∑

i=1

(ai + si)g2i.

Let x = x1 + vx2, x1, x2 ∈ Fn
p . Then x̂ = x1 + x2. Thus

v(x1 + x2) = v(x1 + vx2) = vx = v

l2∑

i=1

(ai + si)g2i.

Hence x1 + x2 =
∑l2

i=1(ai + si)g2i. Therefore

y = x̂ = x1 + x2 =
l2∑

i=1

(ai + si)g2i ∈ C2,

by which we obtain (̂C : v) ⊆ C2. From the above results we get that (̂C : v) = C2.

On the other hand, note that

vg2i + (1− v)g1i ∈ C, i.e. g1i + v(g2i − g1i) ∈ C,

for 1 ≤ i ≤ l1, where g2i = 0, if i > l2. By Lemma 3.1 we have g1i ∈ (C : (1− v)), for 1 ≤ i ≤ l1.
Therefore C1 ⊆ (C : (1− v)).

Let z ∈ (C : (1− v)), then there exists s ∈ (C : (1−v)) such that z = s. Since (1−v)s ∈ C,
we may assume that

(1− v)s =
l2∑

i=1

(bi + vti)[vg2i + (1− v)g1i] +
l1∑

l2+1

(bi + vti)[(1− v)g1i],

where bi + vti ∈ Fp + vFp, for 1 ≤ i ≤ l1. So

(1− v)s = (1− v)2s = (1− v) · (1− v)s = (1− v)
l1∑

i=1

big1i.

Let s = s1 + vs2, s1, s2 ∈ Fn
p . Then s = s1. Thus

(1− v)s1 = (1− v)(s1 + vs2) = (1− v)s = (1− v)
l1∑

i=1

big1i.

Hence s1 =
∑l1

i=1 big1i. Therefore we have

z = s = s1 =
l1∑

i=1

big1i ∈ C1,

which implies that (C : (1− v)) ⊆ C1. Thus we get that (C : (1− v)) = C1.

Finally, by Lemma 3.2 and Lemma 3.2,

C = v(̂C : v)⊕ (1− v)(C : (1− v))
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= vC2 ⊕ (1− v)C1,

which is our desired result. Thus we complete the proof.

Corollary 4.2 Suppose that C1 and C2 are two self-dual codes of length n over Fp with
generator matrices G1 and G2, respectively, then the linear code C over R generated by the
matrix G is also self-dual, where

G = vG2 + (1− v)G1,

and C = vC2 ⊕ (1− v)C1.

Proof Noting that l1 = l2 in this case, by Lemma 3.1 and Lemma 3.2 and Theorem 4.1
we have that

C⊥ = v((̂C : v))⊥ ⊕ (1− v)((C : (1− v)))⊥

= vC⊥2 ⊕ (1− v)C⊥1
= vC2 ⊕ (1− v)C1

= C.

So C is self-dual.

Remark 4.3 We mention that one can check in the same way as in Theorem 4.1 and
Corollary 4.2 that all the results also hold for the case when G1 and G2 are two generating
matrices, i.e., they are only matrices that generate C1 and C2, respectively. We reformulate the
result as follows.

Suppose that C1 and C2 are linear codes of length n over Fp with generating matrices G1

and G2, respectively, and let r1 and r2 be the numbers of the rows of G1 and G2, respectively,
then the code C over R generated by the matrix G as follows satisfies

(̂C : v) = C2; (C : (1− v)) = C1

and C = vC2 ⊕ (1− v)C1, where

G =





(
vG2

0

)
+ (1− v)G1, if r1 > r2;

vG2 +
(

(1− v)G1

0

)
, if r1 < r2;

vG2 + (1− v)G1, if r1 = r2.

On the other hand, if C1 and C2 are self-dual, then the code C generated by the above matrix
G is also self-dual.

Theorem 4.4 All the self-dual codes over R are given by

vC2 ⊕ (1− v)C1,

where C1, C2 range over all the self-dual codes over Fp, respectively. And this expression is
unique, i.e., if

vC2 ⊕ (1− v)C1 = vC′2 ⊕ (1− v)C′1,
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then C2 = C′2 and C1 = C′1, where C1, C2, C′1 and C′2 are all self-dual codes over Fp.

Proof First according to Remark 3.4, every self-dual code over R can be explicitly ex-
pressed by two fixed self-dual codes over Fp as in the above form.

Next, let C1, C2 be two self-dual codes over Fp. Assume that G1 and G2 are generator
matrices for C1, C2, respectively. Then according to Corollary 4.2 we know that the code C

generated by the matrix vG1 + (1− v)G2 is self-dual and satisfies C = vC2 ⊕ (1− v)C1.

Let x ∈ C2. Since vC2 ⊕ (1− v)C1 = vC′2 ⊕ (1− v)C′1, we have that

vx ∈ vC2 ⊆ vC2 ⊕ (1− v)C1 = vC′2 ⊕ (1− v)C′1.

Setting vx = vx′ + (1 − v)y′, where x′ ∈ C′2, y′ ∈ C′1, we get that v(x − x′) = (1 − v)y′ and
v(x− x′) = 0, so x = x′. Therefore C2 ⊆ C′2. Similarly, we have C′2 ⊆ C2. Hence C2 = C′2.

Let z ∈ C1. Since vC2 ⊕ (1− v)C1 = vC′2 ⊕ (1− v)C′1, we have that

(1− v)z ∈ (1− v)C1 ⊆ vC2 ⊕ (1− v)C1 = vC′2 ⊕ (1− v)C′1.

Setting (1− v)z = va′ + (1− v)z′, where a′ ∈ C′2, z′ ∈ C′1, we get that (1− v)(z − z′) = va′ and
(1− v)(z − z′) = 0, so z = z′. Therefore C1 ⊆ C′1. Similarly, we have C′1 ⊆ C1. Hence C1 = C′1.
Thus we complete the proof.

Corollary 4.5 Let N(R) be the number of self-dual codes of length n over R and N(Fp)
the number of self-dual codes of length n over Fp. Then

N(R) = N(Fp)2.

Proof It follows from Theorem 4.4.

The following lemma is well known and can be found in [28].

Lemma 4.6 Let Fq be a finite field with characteristic p. Then

(i) If p = 2 or p ≡ 1 (mod 4), then a self-dual code of length n exists over Fq if and only if
n ≡ 0 (mod 2).

(ii) If p ≡ 3 (mod 4), then a self-dual code of length n exists over Fq if and only if n ≡
0 (mod 4).

Now Combining Theorem 4.4 with Lemma 4.6, the following result is easily obtained.

Theorem 4.7 With the above notation. Then the following holds:

(i) If p = 2 or p ≡ 1 (mod 4), then a self-dual code of length n over R exists if and only if
n ≡ 0 (mod 2).

(ii) If p ≡ 3 (mod 4), then a self-dual code of length n over R exists if and only if n ≡
0 (mod 4).
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§5. Examples

According to Corollary 4.2, the construction of self-dual codes over R hinges on constructing
the self-dual codes over Fp. See [19] on the building-up construction for self-dual codes over
Fp. The following examples illustrate the result.

Example 5.1 Consider the construction of self-dual code of length 6 over R = F2 + vF2.
Here l1 = l2 = 3 and

G1 =




1 0 1 1 0 1
1 1 1 0 1 0
1 1 1 1 1 1


 ;G2 =




1 0 0 1 0 0
0 0 1 0 0 1
1 1 1 1 1 1


 .

Then the code C of length 6 over R = F2 + vF2 generated by the following matrix

G = vG2 + (1− v)G1 = G1 + v(G2 −G1)

=




1 0 1 + v 1 0 1 + v

1 + v 1 + v 1 0 1 + v v

1 1 1 1 1 1




is self-dual.

Example 5.2 Consider the construction of self-dual code of length 12 over R = F3 +vF3.
Here l1 = l2 = 6 and

G1 = (I6 | B),

where I6 denotes the 6× 6 identity matrix, and

B =




0 1 1 1 1 1
1 0 1 2 2 1
1 1 0 1 2 2
1 2 1 0 1 2
1 2 2 1 0 1
1 1 2 2 1 0




,

i.e., the code with generator matrix G1 is the ternary Golay code;

G2 =




0 1 1 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 1 2 0 1 1 0

0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 1 0 0 0 1 0 2 0

0 0 0 0 0 0 0 0 1 2 1 0

2 1 2 0 1 2 1 0 2 2 0 1




.

Then the code C of length 12 over R = F3 + vF3 generated by the following matrix

G = vG2 + (1− v)G1 = G1 + v(G2 −G1) =
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


1 + 2v v v v 0 0 0 1 + 2v 1 + 2v 1 + 2v 1 + 2v 1 + 2v

v 1 + 2v 0 0 v 0 1 2v 1 + 2v 2 + 2v 2 + 2v 1 + 2v

0 0 1 + 2v 0 0 v 1 1 0 1 + 2v 2 + v 2 + v

0 0 0 1 + 2v v 0 1 + 2v 2 + v 1 0 1 + v 2 + v

0 0 0 0 1 + 2v 0 1 + 2v 2 + v 2 + 2v 1 + v v 1 + 2v

2v v 2v 0 v 1 + v 1 1 + 2v 2 2 1 + 2v v




.

is self-dual.

§6. Conclusion

In this paper, we completely determine the construction and enumeration of self-dual codes
over Fp + vFp, which is a non-chain ring. Now we leave the reader with the possible direction
for further work. It is known that any nonzero constacyclic code over Fp + vFp has a unique
generating set in standard form. So it is nature and would be interesting to study the self-dual
constacyclic codes over finite non-chain rings in terms of their generating set in standard form.
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