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Abstract: The twisted Heisenberg-Virasoro algebra is the universal central extension of the

Lie algebra of differential operators on a circle of order at most one. In this paper, we first

study the variety of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex opera-

tor algebra, which is a finite set consisting of two nontrivial elements. Based on this property,

we also show that the twisted Heisenberg-Virasoro vertex operator algebra is a tensor prod-

uct of two vertex operator algebras. Moreover, associating to properties of semi-conformal

vectors of the twisted Heisenberg-Virasoro vertex operator algebra, we charaterized twisted

Heisenberg-Virasoro vertex operator algebras. This will be used to understand the classi-

fication problems of vertex operator algebras whose varieties of semi-conformal vectors are

finite sets.

Key words: Twisted Heisenberg-Virasoro algebra; Vertex operator algebra; Semi-conformal

vector; Semi-conformal subalgebra

2000 MR Subject Classification: 17B69

CLC number: O152.5 Document code: A

Article ID: 1002–0462 (2019) 02–0126–12

§1. Introduction

The twisted Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra
of differential operators on a circle of order at most one, which has been first studied by
Arbarello etal, in Ref. [3]. It contains the classical Heisenberg algebra and the Virasoro algebra
as subalgebras. And they also have established a connection between the second cohomology
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of certain moduli spaces of curves and the second cohomology of the Lie algebra of differential
operators of order at most one.

The representation theory of the twisted Heisenberg-Virasoro algebra is closely related to
those of other Lie algebras, such as the Virasoro algebra and toroidal Lie algebras, and has been
studied in Refs. [1, 4-6, 14, 19-20, 26-27]. In Ref.[4], the free field realization of the twisted
Heisenberg-Virasoro algebra at level zero is given and its applications can be obtained. In
Ref.[2], A. Alexandrov constructed new relations connecting Kontsevich-Witten tau-functions,
Hodge integrals and Hurwitz numbers and derived linear constraints for all of them. These
constraints as operators form a twisted Heisenberg-Virasoro algebra.

It’s well known that the vertex operator algebra theory provides a rigorous mathematical
foundation for two dimensional conformal field theory and string theory from the Hamilto-
nian point of view(Refs.[23, 28]). It follows from Proposition 3.1 in Ref.[6] that the twisted
Heisenberg-Virasoro vertex operator algebra has a vertex operator algebra structure which is
the tensor product of a Virasoro vertex operator algebra and a Heisenberg vertex operator alge-
bra. In Refs.[8-9], we used their semi-conformal vectors to describe Heisenberg vertex operator
algebras and affine vertex operator algebras (began from Refs.[21-22]). [8, Theorem 1.1] tells
that the set of all semi-conformal vectors of a vertex operator algebra V = ⊕n∈ZVn forms a
Zarisk closed subset (or, an affine algebraic variety) in the weight-two subspace V2 . For the
twisted Heisenberg-Virasoro vertex operator algebra, we find it has only two nontrivial semi-
conformal vectors. Thus, we can also see easily that the twisted Heisenberg-Virasoro vertex
operator algebra is a tensor product of two vertex operator algebras. Based on the variety of
semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra, we describe
such a class of vertex operator algebras. In general, for a simple CFT-type vertex operator
algebra (V, ω), if its variety Sc(V, ω) of semi-conformal vectors contains only finite nontrivial
elements with the some conditions, then (V, ω) is isomorphic to a twisted Heisenberg-Virasoro
vertex operator algebra. Actually, this result shows a characterization of twisted Heisenberg-
Virasoro vertex operator algebras.

In further work, we shall understand the properties of some class of vertex operator algebras
whose varieties of semi-conformal vectors are finite sets, which will lead to classifying vertex
operator algebras by properties of their varieties of semi-conformal vectors from a geometric
viewpoint.

Notation: C is the complex number field; R is the real number field; Z is the set of all integer
numbers; N is the set of all non-negative integer numbers; Z+ is the set of all positive integer
numbers.

§2. The Vertex Operator Algebra Associated to the

Twisted Heisenberg-Virasoro Algebra

In the section, we shall review the vertex operator algebra associated to the twisted Heisenberg-
Virasoro algebra. You can refer to the Refs.[3, 4, 6] for more details.
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Let C[t±1] be the ring of Laurent polynomials with the variable t. Denoted the Lie algebra
of derivations on C[t±] by Der(C[t±1]). Let Ln = −tn+1 d

dt , n ∈ Z. Then Der(C[t±1]) has a basis
{Ln | n ∈ Z}. Let A be the universal central extension of abelian Lie algebra C[t±] with a basis
{tn, Ch |∈ Z}. The twisted Heisenberg -Virasoro algebra is the universal central extension of
the semi-direct product Lie algebra Der(C[t±1])nA, denoted by HV. The Lie algebra HV has
a basis

{Lm, tn, Cv, Ch, C | m,n ∈ Z}.
The non-trivial Lie bracket relations are as follows

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3 −m

12
Cv; (2.1)

[Ln, tm] = −mtm+n − δm+n,0(n2 + n)C. (2.2)

where m,n ∈ Z.

For convenience, we write tn as bn, HV has a Z-graded structure

HV =
⊕

n∈Z
HV(n),

where for n 6= 0, HV(n) = CLn ⊕Cbn for n 6= 0 and HV(0) = SpanC{L0, b0, Cv, Ch, C}. So HV
has a triangle decomposition

HV = HV+ ⊕HV− ⊕HV(0),

where HV+ = ⊕n>0HV(n);HV− = ⊕n>0HV(−n).

Let C be a 1-dimensional HV+ ⊕HV(′)-module as follows

Ln · 1 = 0, for n > 0; bn · 1 = 0, for n > 0;L0 · 1 = h, b0 · 1 = h1,

Cv · 1 = cv;Ch · 1 = ch;C · 1 = c, h, h1cv, ch, c ∈ C.

Then we get the induced HV-module

M(h, h1, cv, ch, c) = U(HV)⊗U(HV+⊕HV(0)) C ∼= U(HV−)(as vector spaces).

M(h, h1, cv, ch, c) is Z− graded by eigenvalues of the operator

L0 − h · Id : M(h, h1, cv, ch, c) =
+∞⊕
n=0

M(h, h1, cv, ch, c)n

with M(h, h1, cv, ch, c)n = {v ∈ M(h, h1, cv, ch, c)|L(0)v = (n + h)v}.
Lemma 2.1[2] Let ch = 0, and c 6= 0.

(a) If h1
c ∈ C\Z or h1

c = 1, then the HV− module M(h, h1, cv, 0, c) is irreducible;

(b) If h1
c ∈ Z\{1}, then M(h, h1, cv, 0, c) possesses a singular vector v ∈ M(h, h1, cv, 0, c)p,

where p =| h1
c − 1 | . The factor-module V = V (h, h1, cv, 0, c) = M(h, h1, cv, 0, c)/U(HV−)v is

irreducible and its character is Ch(V ) = (1− qp)
∏

j≥1(1− qj)−2.
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Denoted by V (cv, ch, c) = M(0, 0, cv, ch, c). Denoted by 1 = 1 ⊗ 1. Let I be the HV-
submodule of V (cv, ch, c) generated by L−11. Then we consider the quotient module V(cv,ch,c) =
V (cv, ch, c)/I. And it has a basis

{
Ln1Ln2 · · ·Lnk

bm1bm2 · · · bml
1 | k, l ∈ N,n1 ≤ · · · ≤ nk ≤ −2;m1 ≤ · · ·ml ≤ −1,

}
.

V(cv,ch,c) has a unique maximal proper submodule, so it has an unique irreducible quotient
which is denoted by L(cv,ch,c). We can define a N− graded structure on V(cv,ch,c) as follows

deg(1) = 0;

deg(L−n1L−n2 · · ·L−nk
b−m1b−m2 · · · b−ml

1) =
k∑

j=1

nj +
l∑

s=1

ms.

Let L(z) =
∑

n∈Z L(n)z−n−2 and b(z) =
∑

n∈Z b(n)z−n−1. Then they satisfy commutation
relations as follows

[L(z1),L(z2)] = 2L(z2)z−1
1 ∂z2δ(

z2

z1
) + ∂z2(L(z2))z−1

1 δ(
z2

z1
) +

1
12

z−1
1 ∂(3)

z2
δ(

z2

z1
)cv. (2.3)

[b(z1), b(z2)] = z−1
1 ∂z2δ(

z2

z1
)ch. (2.4)

[L(z1), b(z2)] = b(z2)z−1
1 ∂z2δ(

z2

z1
) + ∂z2b(z2)z−1

1 δ(
z2

z1
)− z−1

1 ∂(2)
z2

δ(
z2

z1
)c. (2.5)

From above the relations, we have the OPE relations

Corollary 2.2 There are the following OPE relations

L(z1)L(z2) ∼ cv/2
(z1 − z2)4

+
2L(z2)

(z1 − z2)2
+

∂z2L(z2)
z1 − z2

; (2.6)

b(z1)b(z2) ∼ ch

(z1 − z2)2
; (2.7)

L(z1)b(z2) ∼ ∂z2b(z2)
z1 − z2

+
b(z2)

(z1 − z2)2
− 2c

(z1 − z2)3
. (2.8)

Theorem 2.3[4] V(cv,ch,c) is a N−graded vertex operator algebra with the conformal
vector L−21 and the central charge cv and are generated strongly by {1,L(z),b(z)}.

According to the Lemma 2.1 (b) , we have the following results

Corollary 2.4 For ch = 0, c 6= 0, the HV-module M(0, 0, ch, 0, c) possesses a singular
vector L(−1)1 in M(0, 0, cv, 0, c)1. So the factor-module

V(cv,0,c) = M(0, 0, cv, 0, c)/U(HV−)(L(−1)1)

is a simple vertex operator algebra.

Let Hch
be the Heisenberg vertex operator algebra with the level ch generated by {bn, Ch|n ∈

Z\{0}}. It follows from Proposition 3.1 in Ref. [6] that
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Proposition 2.5 If ch 6= 0, the vertex operator algebra V(cv,ch,c) is isomorphic to the
tensor product V(c′v,0) ⊗ Hch

of a Virasoro vertex operator algebras V(c′v,0) with the central
charge c′v and Hch

, where c′v = cv − 1 + 12c2

ch
and ω′′ = ( 1

2ch
(b−1)2 + c

ch
b−2)1 is the conformal

vector of Hch
.

§3. Semi-conformal Vectors of the Vertex Operator
Algebra V(cv,ch,c)

In this section, let (V, Y,1, ω) (Abbrev. (V, ω))be a Z− graded vertex operator algebra(Refs.
[15, 23, 28] for details). We shall review basic notions and results associated with semi-conformal
vectors for a vertex operator algebra V . This content can be seen in Refs.[14-15]

3.1 First, we review the commutant of a vertex algebra. It’s well-known as the coset con-
struction in conformal field theory(Refs.[17-18]).

Definition 3.1[7, 18, 23, 25] Let W be a vertex algebra, and U be any subset of W . The
commutant of U in W is defined by

CW (U) = {v ∈ W |[Y (u, z), Y (v, w)] = 0,∀u ∈ U} = {v ∈ W |unv = 0,∀u ∈ U, n ≥ 0}.

Remark 3.2 Obviously, 1 ∈ CW(U). Furthermore, CW (U) is a vertex subalgebra of W .
And we also have CW (U) = CW (< U >), where < U > is the vertex subalgebra of W by the
subset U .

Remark 3.3 In a VOA (V, ω), let (U, ω′) be a subalgebra of V . If CV (Cv(U)) = U ,
we say (U,CV (U)) forms a Howe pair in V (Refs.[7,25]). According to the conclusions in Refs.
[18,23], a subalgebra U can be realized as a commutant subalgebra of V if and only if (U,CV (U))
forms a Howe pair in V .

3.2 For two given vertex algebras (V, YV ) and (W,YW ) a homomorphism f : V → W of
vertex algebras satisfies

f(YV (u, z)v) = YW (f(u), z)f(v), ∀u, v ∈ V ; and f(1V ) = 1W . (3.1)

If (V, ωV ) and (W,ωW ) are two VOAs with conformal vectors ωV and ωW , respectively, then f

is said to be conformal if f(ωV ) = ωW . We say f is semi-conformal if f ◦ LV (n) = LW (n) ◦ f,

for all n ≥ −1. Let (V, ωV ) be a VOA and a vertex subalgebra of (W,ωW ). We say V is a
conformal subalgebra (or subVOA) if ωW = ωV , i.e, they have the same conformal vector. If
the inclusion from V to W is semi-conformal, then V is called a semi-conformal subalgebra of
W and ωV is called a semi-conformal vector of W .

For a VOA (W,ωW ) with the conformal vector ωW , let

Sc(W,ωW ) = {ω′|ω′ is a semi-conformal vector of (W,ωW )}.

Lemma 3.4[8] A vector ω′ ∈ W is a semi-conformal vector of (W,ωW ) if and only if it
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satisfies the following conditions




L′(0)ω′ = L(0)ω′ = 2ω′;

L′(1)ω′ = L(1)ω′ = 0;

L′(2)ω′ = L(2)ω′ = c
21;

L′(−1)ω′ = L(−1)ω′;

L′(n)ω′ = L(n)ω′ = 0, n ≥ 3.

Where Y (ω′, z) = L′(z) =
∑

n∈Z L′(n)z−n−2, Y (ωW , z) = L(z) =
∑

n∈Z L(n)z−n−2 and c ∈ C.

Let (W,ωW ) be a general Z-graded vertex operator algebra. The set Sc(W,ωW ) forms an
affine algebraic variety([8, Theorem 1.1]). In fact, a semi-conformal vector ω′ ∈ W can be
characterized by algebraic equations of degree at most 2 as described in [8, Proposition 2.2].
The algebraic variety Sc(W,ωW ) has also a partial order ¹ (See [8, Definition 2.7]), and this
partial order can be characterized by algebraic equations in [8, Proposition 2.8].

Proposition 3.5 If ch 6= 0, then Sc(V(c,ch,cv), ω) = {0, ω′, ω − ω′, ω}, where ω′ =
1

2ch
b(−1)21+ c

ch
b(−2)1. Moreover, there are two longest partial order chain in Sc(V(c,ch,cv), ω)

such as follows
0 ¹ ω′ ¹ ω; 0 ¹ ω − ω′ ¹ ω.

Proof Note that the weight-two subspace of V(c,ch,cv) is spanned by {ω = L(−2)1, b(−1)2

1, b(−2)1}. Set ω′ = xb(−1)21+yb(−2)1+zL(−2)1, where x, y, z ∈ C. According to the Lemma
3.4, we have ω′ ∈ Sc(V(c,ch,cv), ω) if and only if x, y, z satisfy that





4chx2 + 4x = 2x;

2y + 4xc + 4chxy = 2y;

y = 2cx;

4x2c2
h − 12y2ch + 4chx− 24yc + cv = 2xch − 12yc + cv;

4x2ch + 4x = 2x;

4xych + 2y + 4cx = 2y;

z = 1.

,

Equivalently, 



4x2ch = 2x;

4xych = 2y;

2xch − 12yc = 4x2c2
h − 12y2ch;

2y = 4cx;

z = 0.

So we have nontrival solutions:x = − 1
2ch

, y = − c
ch

, z = 1 and x = 1
2ch

, y = c
ch

, z = 0, i.e, there
are only two nontrival semi-conformal vectors ω′ = 1

2ch
b(−1)21 + c

ch
b(−2)1 and ω − ω′.

With respect to the partial order ¹ of [8, Definition 2.7], we have two longest partial order
chain in Sc(V(c,ch,cv), ω) such as follows

0 ¹ ω′ ¹ ω; 0 ¹ ω − ω′ ¹ ω.
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Remark 3.6 For each ω′ ∈ Sc(W,ωW ), it determines a unique dual pair (CW (CW (< ω′ >

)), CW (< ω′ >)) as semi-conformal subalgebras of (W,ωW ) in the sense of Howe duality in VOA
theory. Let (V, ωV ) be a semi-conformal subalgebra of (W,ωW ). Then (V, ωV ) has a unique
maximal conformal extension (CW (CW (V )), ωV ) in (W,ωW ) in the sense that if (V, ωV ) ⊂
(U, ωV ), then (U, ωV ) ⊂ (CW (CW (V )), ωV ) (see [23, Corollary 3.11.14]).

Lemma 3.7 Let (V, ω) be a N− graded vertex operator algebra with V0 = C1 and the
conformal vector ω. If ω′ ∈ Sc(V, ω), then CV (< ω′ >) ⊗ CV (CV (< ω′ >)) is a conformal
subalgbra of V , where < ω′ > is the Virasoro VOA generated by ω′ in V .

Proof We know that L′(n) = 0 on CV (< ω′ >) and L(n) = L′(n) on CV (CV (< ω′ >))
for n ≥ −1, then CV (< ω′ >) ∩ CV (CV (< ω′ >)) = C1. So CV (< ω′ >)⊗ CV (CV (< ω′ >)) is
a conformal subalgebra of V .

Theorem 3.8 For ch 6= 0, the Heisenberg-Virasoro vertex operator algebra V(cv,ch,c) is
isomorphic to the tensor product V(c′v,0) ⊗ Hch

of the simple Virasoro VOA V(c′v,0) and the
Heisenberg VOA Hch

with the conformal vector ω′ = 1
2ch

b(−1)21 + c
ch

b(−2)1, where c′v =

cv + 12c2

ch
− 1.

Proof By Remark 3.6, we note that the maximal semi-conformal subalgebra with the
conformal vector ω′ is the Heisenberg VOA Hch

in V(cv,ch,c), i.e., CV(cv,ch,c)(CV(cv,ch,c)(< ω′ >

)) ∼= Hch
. By Lemma 3.7, we know that CV(cv,ch,c)(< ω′ >)) ⊗Hch

is a subVOA of V(cv,ch,c).
And since < ω − ω′ > ⊗Hch

⊂ CV(cv,ch,c)(< ω′ >)) ⊗ Hch
, then CV(cv,ch,c)(< ω′ >)) ⊗ Hch

as a subVOA of V(cv,ch,c) has at less two generators {ω − ω′, b(−1)1}, where b(−1)1 generates
Hch

. We know V(cv,ch,c) is also generated by two vectors {b(−1)1, ω} and CV(cv,ch,c)(< ω′ >

)) ∩Hch
= C1, then CV(cv,ch,c)(< ω′ >)) =< ω − ω′ >= V(c′v,0) and V(cv,ch,c)

∼= V(c′v,0) ⊗Hch
,

when ch 6= 0, c′v = cv + 12c2

ch
− 1.

Lemma 3.9[23] Let V be a simple vertex operator algebra and U be any vertex operator
subalgebra(with the same conformal vector ω), for example, U =< ω >. Then the vertex
subalgebra

CV (U) = C1.

In particular,
KerL−1 = CV (V ) = CV (< ω >) = C1.

Lemma 3.10[21] Let (V ′, Y ′, 1′, ω′), (V ′′, Y ′′, 1′′, ω′′) be two vertex operator algebras.
Then there are

CV ′⊗V ′′(V ′ ⊗ 1′′) = CV ′(V ′)⊗ V ′′;CV ′⊗V ′′(1′ ⊗ V ′′) = V ′ ⊗ CV ′′(V ′′),

In particular, if V ′ is simple vertex operator algebra, then

CV ′⊗V ′′(V ′ ⊗ 1′′) = 1′ ⊗ V ′′.

According to above Lemma 3.10, 3.11, we have

Corollary 3.11 When ch 6= 0 and c′v = cv + 12c2

ch
− 1, we have CV(cv,ch,c)(Hch

) = V(c′v,0)

and CV(cv,ch,c)(V(c′v,0)) = CV(c′v,0)
(V(c′v,0))⊗Hch

.
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Corollary 3.12 1) If c′v 6= 1 − 6(p−q)2

pq for all coprime integer pairs p, q ≥ 2 and c′v =

cv − 1 + 12 c2

ch
for ch 6= 0, the vertex operator algebra V(cv,ch,c) is a simple vertex operator

algebra;

2) If there exists coprime integers p, q ≥ 2 such that c′v = 1− 6(p−q)2

pq and c′v = cv− 1+12 c2

ch

for ch 6= 0, the vertex operator algebra V(cv,ch,c) has a unique simple quotient L(cv,ch,c) =
L(c′v,0) ⊗Hch

.

Proof If c′v 6= cp,q = 1 − 6(p−q)2

pq for all coprime integer pairs p, q ∈ {2, 3, · · · }, then
V(c′v,0) is a simple vertex operator algebra. By Theorem 3.8, we get V(cv,ch,c) is a simple vertex
operator algebra.

If c′v = cp,q = 1− 6(p−q)2

pq for some coprime integer pairs p, q ∈ {2, 3, · · · }, then V(c′v,0) is not
a simple vertex operator algebra, but it has a unique simple quotient L(c′v,0). By Theorem 3.8,
we know that V(cv,ch,c) is not a simple vertex operator algebra, however, it has a unique simple
quotient L(cv,ch,c) = L(c′v,0) ⊗Hch

.

§4. The Characterization of Twisted

Heisenberg-Virasoro Vertex Operator Algebras

In this section, according to the properties of twisted Heisenberg-Virasoro vertex operator
algebras, we characterize this class of vertex operator algebras by semi-conformal vectors.

Let V be a simple N− graded vertex operator algebra with V0 = C1. Such V is also
called a simple CFT type vertex operator algebra(Refs. [10-11]). If V satisfies the further
condition that L(1)V1 = 0, it is of strong CFT type. Li has shown (Ref. [24]) that such a
vertex operator algebra V has a unique non-degenerate invariant bilinear form <,> up to a
multiplication of a nonzero scalar. In particular, the restriction of <,> to V1 endows V1 with
a non-degenerate symmetric invariant bilinear form < u, v >= u(1)v for u, v ∈ V1. For v ∈ Vn,
the component operator v(n − 1) is called the zero mode of v. It is well-known that V1 forms
a Lie algebra with the bracket operation [u, v] = u(0)v for u, v ∈ V1. For a simple CFT-type
vertex operator algebra (V, ω), if the bilinear form on V1 is nondegenerate, we say (V, ω) is a
non− degenerate simple CFT type vertex operator algebra. Let (V, ωV ) be a semi-conformal
subalgebra of (W,ωW ) and (U, ωV ) be a semi-conformal subalgebra of (W,ωW ). If V ⊂ U , then
we say (U, ωV ) is a conformal extension of (V, ωV ) in (W,ωW ).

Lemma 4.1 Let (U, ωU ) and (V, ωU ) be two semi-conformal subalgebras of the VOA
(W,ωW ). If (U, ωU ) is a conformal extension of (V, ωU ) in (W,ωW ), then

1)
CW (V ) = CW (U);

2)
Sc(CW (V ), ωW − ωU ) = Sc(CW (U), ωW − ωU ).

Proof Since (U, ωU ) is a conformal extension of (V, ωU ) in (W,ωW ), then CW (V ) is a
conformal extension of CW (U) in (W,ωW ) and they are both semi-conformal subalgebras with
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the conformal vector ωW − ωU . According to Refs.[12,16], we know that there is a unique
maximal conformal extension for a semi-conformal subalgebra (S, ωS), which is realized as
the double commutant (CW (CW (S))) of (S, ωS) in (W,ωW ) in the sense that if (S, ωS) ⊂
(T, ωS), then (T, ωS) ⊂ (CW (CW (S)), ωS). So CW (CW (CW (V ))) = CW (CW (CW (U))). Since
CW (CW (CW (S))) = CW (S) for a general subalgebra S of W , then we have CW (V ) = CW (U);

According to the definition of semi-conformal vectors of W , the assert 2) is obvious.

Lemma 4.2 Let (V, ω) be a Z-graded vertex operator algebra and (U, ω′) be a vertex
subalgebra of V . Then ω′ ∈ Sc(V, ω) if and only if Sc(U, ω′) ⊂ Sc(V, ω).

Proof Since ω′ ∈ Sc(V, ω), then (U, ω′) is a semi-conformal subalgebra of V . For any
ω′′ ∈ Sc(U, ω′), we have L′′(n) = L′(n) on W for n ≥ −1, where (W,ω′′) is a semi-conformal
subalgebra of U . Since ω′ ∈ Sc(V, ω), then we have L(n) = L′(n) on U for n ≥ −1. So we have
L(n) = L′′(n) on W for n ≥ −1. Hence ω′′ ∈ Sc(V, ω).

If Sc(U, ω′) ⊂ Sc(V, ω), it is obvious that ω′ ∈ Sc(V, ω).

Lemma 4.3[8] Let (V, ω) be a nondegenerate simple CFT type vertex operator algebra
generated by V1. Let (V ′, ω′) and (V ′′, ω′′) be two vertex operator subalgebras with possible
different conformal vectors. Assume that (V, ω) = (V ′, ω′) ⊗ (V ′′, ω′′) is a tensor product of
vertex operator algebras (see [12, Section 3.12]). Then

1) (V ′, ω′) and (V ′′, ω′′) are semi-conformal subalgebras and both are also non-degenerate
simple CFT type;

2) V1 = V ′
1⊗1′′⊕1′⊗V′′

1, is an orthogonal decomposition with respect to the non-degenerate
symmetric bilinear form 〈·, ·〉 on V1;

3) [V ′
1 ⊗ 1′′,1′ ⊗V′′

1] = 0 with the Lie bracket [·, ·] on V1;

4) Sc(V ′, ω′) ⊗ 1′′, 1′ ⊗ Sc(V′′, ω′′), and Sc(V ′, ω′) ⊗ 1′′ + 1′ ⊗ Sc(V′′, ω′′) are subsets of
Sc(V, ω);

5) For each ω̃′ ∈ Sc(V ′, ω′), we have

CV (< ω̃′ > ⊗1′′) = CV′(< ω̃′ >)⊗V′′

and
CV (CV (< ω̃′ > ⊗1′′)) = CV′(CV′(< ω̃′ >))⊗ 1′′.

Lemma 4.4 For a simple CFT type VOA (V, ω), if V = V 1 ⊗ V 2 and (V 1, ω1) and
(V 2, ω2) are vertex operator subalgebras of V , then

1) CV (< ω1 >) = CV (CV (< ω2 >)) = V 2 and CV (< ω2 >) = CV (CV (< ω1 >)) = V 1;

2) When Sc(V, ω) = {0, ω1, ω2, ω}, we have Sc(V 1, ω1) = {0, ω1} and Sc(V 2, ω2) = {0, ω2}.

Proof First, we note that ω = ω1 + ω2. Since L1(n) = 0 on V 2 and L2(n) = 0 on V 1, so
L(n) = L1(n) on V 1 and L(n) = L2(n) on V 2 for n ∈ Z, that is ω1, ω2 ∈ Sc(V, ω).
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According to Lemma 3.10, we know that CV (V 1) = CV (CV (V 2)) = V 2 and CV (V 2) =
CV (CV (V 1)) = V 1. Since there exists a unique maximal semi-conformal subalgebra of V for
each ω′ ∈ Sc(V, ω), which can be realized as the double commutant subalgebra containing ω′

as the conformal vector, then we have CV (< ω1 >) = CV (CV (< ω2 >)) = V 2 and CV (< ω2 >

) = CV (CV (< ω1 >)) = V 1.

When Sc(V, ω) = {0, ω1, ω2, ω}, since V = V 1 ⊗ V 2, then V 1, V 2 are both semi-conformal
subalgebras of V . By Lemma 4.2, we know that Sc(V 1, ω1) = {0, ω1} and Sc(V 2, ω2) = {0, ω2}.

For a CFT- type VOA (V, ω), we know that V1 forms a Lie algebra with the bracket operation
[u, v] = u(0)v for u, v ∈ V1.

Lemma 4.5 For a non-degenerate CFT-type vertex operator algebra V = V 1⊗V 2, where
(V 1, ω1) and (V 2, ω2) are subVOAs of V , if Sc(V, ω) = {0, ω1, ω2, ω}, then either V 1

1 = 0 or
V 2

1 = 0.

Proof Since V = V 1⊗V 2, by Lemma 4.3 1), we have V1 = V 1
1 ⊕V 2

1 and V 1
1 is orthogonal

to V 2
1 in V1. If V 1

1 6= 0 and V 2
1 6= 0, we take h1 ∈ V 1

1 , h2 ∈ V 2
1 such that < hi, hi >= 1, <

h1, h2 >= 0 for i = 1, 2, let W1 = SpanC{h1, h2}. As an abelian Lie algebra, W1 generates a
Heisenberg vertex operator algebra MW1(1) with the rank 2. According to Ref. [?], we know
that Sc(MW1(1)) is a infinite set, and then by Lemma 4.2, we get Sc(MW1(1)) ⊂ Sc(V, ω). So
there is a contraction with Sc(V, ω) = {0, ω1, ω2, ω}. Therefore, either V 1

1 = 0 or V 2
1 = 0.

Theorem 4.6 Assume that (V, ω) is a simple non-degenerate CFT type vertex operator
algebra and be generated strongly by the subspace V1 ⊕ V2, where V1 6= 0 is an abelian Lie
algebra as the weight-one subspace and V2 is the weight-two subspace with dimV2 = 1. If
Sc(V, ω) = {0, ω′, ω′′, ω} and V = CV (< ω′ >) ⊗ CV (< ω′′ >), then (V, ω) is isomorphic to a
simple twisted Heisenberg-Virasoro vertex operator algebra.

Proof Assume that < ω′ > and < ω′′ > have central charges c′, c′′ as Virasoro vertex
operator algebras, respectively. At first, since V = CV (< ω′ >) ⊗ CV (< ω′′ >), we note that
ω′′ = ω−ω′ and CV (< ω′′ >) = CV (CV (< ω′ >)). By Lemma 4.3 2), we have V1 = CV (< ω′ >

)1 ⊕ CV (< ω′′ >)1 and CV (< ω′ >)1 is orthogonal to CV (< ω′′ >)1 in V1. By Lemma 4.5, we
know that either CV (< ω′ >)1 = 0 or CV (< ω′′ >)1 = 0. We can assume that CV (< ω′ >)1 = 0,
then CV (< ω′′ >)1 = V1.

Since V1 is an abelian Lie algebra, then V1 generates a simple Heisenberg VOA MV1(c
′)

in V and CV (< ω′′ >) = MV1(c
′),where c′ is the central charge of MV1(c

′). According to
the condition Sc(V, ω) = {0, ω′, ω′′, ω} and the results of Ref.[15], we know that dimV1 = 1.
Note that V is simple, then CV (< ω′′ >) and CV (< ω′ >) are both simple. On the other
hand, since CV (< ω′ >)1 = 0 and dimV2 = 1, then CV (< ω′ >) =< ω′′ >, where < ω′′ > is
the simple Virasoro VOA with the central charge c′′. Finally, according to Theorem 3.8, we
obtain that V is isomorphic to the twisted Heisenberg vertex operator algebra V

(c′′+c′,1− 12c2
c′ ,c)

or L
(c′′+c′,1− 12c2

c′ ,c)
for some c ∈ C as two cases in Corollary 3.12.

The twisted Heisenberg-Virasoro vertex operator algebra has two nontrivial semi-conformal
vectors and it is also a tensor product of two vertex operator algebras. Such information will
lead us to study the classification of VOAs with two nontrivial semi-conformal vectors in further
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work.

Remark 4.7 According to our present study, we know that some basic simple CFT type
vertex operator algebras have no nontrivial semi-conformal vectors as follows

• M(1)(Ref.8), which is the Heisenberg vertex operator algebra with the rank 1 generated
by = Ch;

• Lŝl 2
(1, 0), which is the simple affine type vertex operator algebra associated to sl 2(Ref.[9]);

• L(`, 0), which is the simple Virasoro vertex operator algebra with the central charge
` 6= 0(Ref.[29]);

• K(sl2, `), which is the parafermion vertex operator algebra with the level ` 6= 1(Refs.
[12-13]).

• V√kA1
, which are a class of lattice vertex operator algebras associated to root lattice of

type A1 for k ∈ {1, 3, 4, · · · }(Ref.[28]).

It is interesting problem for us that the classification of vertex operator algebras without
nontrivial semi-conformal vectors. Moreover, based on Theorem 4.6, we conjecture that for a
vertex operator algebra (V, ω) with two nontrivial semi-conformal vectors, it should contain a
conformal vertex operator subalgebra which is a tensor product of two vertex operator algebras
without nontrivial semi-conformal vectors up to isomorphism. In fact, we expect to classify
vertex operator algebras with two nontrivial semi-conformal vectors by tensor decompositions
of vertex operator algebras.
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