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Abstract: The objective of this paper is to present a new approach for solving the multi-

criteria group decision-making (MCGDM) problems in type-2 single valued neutrosophic

set (T2SVNS) environment. Firstly, we give the concepts SVNS, T2SVNS and tangent

similarity measure with T2SVN information. Secondly, we define a new entropy function

for determining unknown attribute weights. In addition, a MCGDM method is developed

based on entropy and tangent similarity measure of T2SVNSs. Finally, an illustrative

example and comparative analysis are given to confirm the rationality and feasibility of

the proposed method.
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§1. Introduction

Neutrosophic set [32] is an important tool for dealing with problems involving uncertainty,

indeterminacy and inconsistency. Wang et al. [33] developed the concept of SVNSs, which

is a subclass of the neutrosophic sets (NSs) for solving scientific and engineering problems.

SVNSs have been widely used in different fields, like engineering problems, [12, 34] medical

problems, [1, 2, 11] image processing problems, [10,17, 18] decision-making problems, [25,29, 37]
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social problems [22,26], conflict problems [27]. Many scholars have also studied type-2 fuzzy

sets, such as Yang et al. [35] introduced the similarity of type-2 fuzzy sets, they also investigated

its properties, Hung et al. [13] proposed similarity methods between two type-2 fuzzy sets, at

this moment, the properties of these methods were obtained. Sing [31] introduced two type-2

fuzzy sets based on the distances between Euclidean and Hamming. Zhao et al. [39] have studied

type-2 intuitionistic fuzzy set (T2IFS), they gave the concept of T2IFS, and discussed the

relation of T2IFS. Cuong et al. [8] introduced some operations between two T2IFSs.

Similarity measure is becoming important in decision making problems. Some strategies

[7, 14] are proposed to measure the similarity between fuzzy sets, whereas these strategies can

not deal with the similarity measures involving uncertainty and inconsistency. In the references,

some scholars have discussed the similarity measures of NSs. [3,4] Mondal et al. [23,36] proposed

sine hyperbolic similarity measure and tangent similarity measure methods to deal with MADM

problems. Lu et al. [24] proposed logarithmic similarity measure and applied it in fault diagnosis

strategy under interval valued fuzzy set environment [19]. In addition to similarity measurement,

there are other aspects of research, such as: correlation coefficient [30], TOPSIS method [5],

aggregating operators [9, 15,21].

Based on the above analysis, few scholars have studied the MCGDM method using tangent

similarity measure, so the main contents of this paper are:

(1) To define a new similarity measure under T2SVNS environment and prove its basic

properties.

(2) To define a new entropy function of T2SVNSs to determine the weight of unknown

attributes.

(3) To develop a MCGDM model based on proposed entropy and similarity measures.

(4) To present an illustrative example and comparative analysis to illustrate effectiveness

and feasibility of the proposed method.

The rest of this paper is structured as follows. In section 2, the concepts of SVNSs and

T2SVNSs are given. In section 3, we define tangent similarity measure between two T2SVNSs

and prove its properties. In section 4, a new entropy funtion to compute unknown attribute

weights for T2SVNSs is proposed. In section 5, we propose a MCGDM method based on entropy

and tangent similarity measures of T2SVNSs. In section 6, an example and comparative analysis

are given to illustrate effectiveness and feasibility of the proposed method. In section 7, we come

to the conclusion.

§2. Preliminaries

2.1. Single valued neutrosophic sets (SVNS)

Definition 2.1. [38] Let X be a universal space of points (objects), with a generic element in X

denoted by x, single valued neutrosophic set (SVNS) Q ⊂X is characterized by truth-membership

function tq(x), indeterminacy-membership function iq(x) and falsity-membership function fq(x).
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A SVNS can be expressed as

Q={[〈x,tq(x),iq(x),fq(x)〉] |x∈X}, (2.1)

where tq(x), iq(x), fq(x) are real standard or nonstandard subsets of [0,1], so that it means tq(x):

X→ [0,1], iq(x): X→ [0,1], fq(x): X→ [0,1], with the condition of 0≤ suptq(x)+supiq(x)+

supfq(x)≤3, for all x∈X.

When X is continuous, a SVNS Q can be written as

Q=

∫
X

〈tq(x),iq(x),fq(x)〉/x, x∈X. (2.2)

When X is discrete, a SVNS Q can be written as

Q=

n∑
i=1

〈tq(xi),iq(xi),fq(xi)〉/xi, xi∈X. (2.3)

Definition 2.2. [33] Let P and Q be two SVNSs,

P = 〈tp(x),ip(x),fp(x)〉, Q= 〈tq(x),iq(x),fq(x)〉,

then, for all x∈X, operations can be defined as follows:

(1) P ⊆ Q, iff, tq(x)≥ tp(x),iq(x)≤ ip(x),fq(x)≤fp(x).

(2) P = Q, iff, P ⊆Q and Q⊆P .

(3) The complement of a SVNS P is denoted as P c, which is defined astpc(x)=fp(x),

ipc(x) = 1− ip(x), fpc(x) = tp(x).

(4) Q
⋃

P=〈max(tp(x),tq(x)),min(ip(x),iq(x)),min(fp(x),fq(x))〉.
(5) Q

⋂
P=〈min(tp(x),tq(x)),max(ip(x),iq(x)),max(fp(x),fq(x))〉.

Definition 2.3. [20] Let Q and P be two SVNSs,

Q= 〈tq(x),iq(x),fq(x)〉, P = 〈tp(x),ip(x),fp(x)〉,

then, ∀ k∈R, there is

(1) Q⊕P=〈tq(x)+ tp(x)− tq(x) · tp(x),iq(x) · ip(x),fq(x) ·fp(x)〉.
(2) Q⊗P=〈tq(x) · tp(x),iq(x)+ ip(x)− iq(x) · ip(x),fq(x)+fp(x)−fq(x) ·fp(x)〉.
(3) λQ=(1−(1− tq(x))k,iq(x)

k
,fq(x)

k
).

(4) Qk = (tq(x)
k
,1−(1− iq(x))k,1−(1−fq(x))k).

2.2. Type-2 single valued neutrosophic set (T2SVNS)

Definition 2.4. [16] A T2SVNS Ñ is a set of pairs {µN (a),ηN (a),νN (a)}, a∈A, µN (a), ηN (a)

and νN (a) are respectively called true membership, uncertain membership and false membership,

which are defined as follows:

µN (a) =

∫
uN∈jTa

ta(uN )/uN ,

ηN (a) =

∫
nN∈jIa

ia(nN )/nN ,

νN (a) =

∫
vN∈jFa

fa(vN )/vN ,

(2.4)
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where uN , nN and vN are named Primary truth-membership function(Ptmf), Primary in-

determinacy membership function (Pimf) and Primary falsity-membership function (Pfmf).

ta(uN ), ia(nN ) and fa(vN ) are called Secondary truth membership function (Stmf), Secondary

indeterminacy membership function (Simf) and Secondary falsity-membership function (Sfmf).

jTa , jIa and jFa are called as primary truth membership, primary indeterminant membership and

primary falsity membership, respectively.

T2SVNS Ñ can be shown as:

Ñ ={〈(a,uN ,nN ,vN ),(ta(uN ),ia(nN ),fa(vN ))〉|a∈A, uN ∈ jTa , nN ∈ jIa, vN ∈ jFa }. (2.5)

For convenience, Ñ can be abbreviated as Ñ=〈(uN ,ta(uN ),nN ,ia(nN ),vN ,fa(vN ))〉, which

is called type-2 single valued neutrosophic number(T2SVNN). From now on, the set of all

T2SVNS over the universe A will be denoted by SV2(A).

Definition 2.5. [16] Let Ñ1=〈(uN1 ,ta(uN1),nN1 ,ia(nN1),vN1 ,fa(vN1))〉 and Ñ2=〈(uN2 ,ta(uN2),nN2 ,

ia(nN2),vN2 ,fa(vN2))〉 be two T2SVNSs, ∀a∈A. Then,

(1) Ñ1 ⊆ Ñ2 if and only if uN1 ≤ uN2 , ta(uN1) ≤ ta(uN2), nN1 ≥ nN2 , ia(nN1) ≥ ia(nN2),

vN1
≥ vN2

, fa(vN1
) ≥ fa(vN2

).

(2) Ñ1 = Ñ2 if and only if Ñ1 ⊇ Ñ2 and Ñ1 ⊆ Ñ2.

(3) Ñ c
1 = 〈vN1

,fa(vN1
),1−nN1

,1− ia(nN1
),uN1

,ta(uN1
)〉.

(4) Ñ1

⋃
Ñ2 = 〈max(uN1

,uN2
),max(ta(uN1

),ta(uN2
)),min(nN1

,nN2
),min(ia(nN1

),ia(nN2
)),

min(vN1
,vN2

),min(fa(vN1
),fa(vN2

))〉.
(5) Ñ1

⋂
Ñ2 = 〈min(uN1

,uN2
),min(ta(uN1

),ta(uN2
)),max(nN1

,nN2
),max(ia(nN1

),ia(nN2
)),

max(vN1
,vN2

),max(fa(vN1
),fa(vN2

))〉.

§3. Tangent similarity measures for T2SVNSs

Definition 3.1. Assume that Ñ1,Ñ2∈SV2(A), similarity measure based on tangent function

between two T2SVNSs is defined as follows:

T (Ñ1,Ñ2) = 1− 1

m

m∑
i=1

tan[
π

12
(|λuN1

(ai)+(1−λ)tai(uN1
)

−λuN2
(ai)−(1−λ)tai(uN2

)|+ |λnN1
(ai)+(1−λ)iai(nN1

)

−λnN2
(ai)−(1−λ)iai(nN2

)|+ |λvN1
(ai)+(1−λ)fai(vN1

)

−λvN2
(ai)−(1−λ)fai(vN2

)|)], 0≤λ≤1.

(3.1)

Theorem 3.1. The defined tangent similarity measure T (Ñ1,Ñ2) of two T2SVNSs, the basic

operations are satisfied as follows:

(1) 1≥T (Ñ1,Ñ2)≥0.

(2) T (Ñ1,Ñ2)=1 if and only if Ñ1 = Ñ2.

(3) T (Ñ1,Ñ2)=T (Ñ2,Ñ1).

(4) if Ñ3∈SV2(A), Ñ1⊆ Ñ2⊆ Ñ3, then T (Ñ1,Ñ3)≤T (Ñ1,Ñ2) and T (Ñ1,Ñ3)≤T (Ñ2,Ñ3).
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Proof. (1) Tangent function increases monotonically on the interval [0, π4 ]. It also depends

on the interval [0,1]. Therefore, 0≤T (Ñ1,Ñ2)≤1.

(2) Assume that two T2SVNS, 0≤λ≤1,

Ñ1 = Ñ2⇒λuN1
(ai)+(1−λ)tai(uN1

) =λuN2
(ai)+(1−λ)tai(uN2

),

λnN1
(ai)+(1−λ)iai(nN1

) =λnN2
(ai)+(1−λ)iai(nN2

),

λvN1(ai)+(1−λ)fai(vN1) =λvN2(ai)+(1−λ)fai(vN2),

⇒|λuN1
(ai)+(1−λ)tai(uN1

)−λuN2
(ai)−(1−λ)tai(uN2

)|= 0,

|λnN1
(ai)+(1−λ)iai(nN1

)−λnN2
(ai)−(1−λ)iai(nN2

)|= 0,

|λvN1
(ai)+(1−λ)fai(vN1

)−λvN2
(ai)−(1−λ)fai(vN2

)|= 0.

⇒T (Ñ1,Ñ2) = 1.

T (Ñ1,Ñ2) = 1⇒|λuN1(ai)+(1−λ)tai(uN1)−λuN2(ai)−(1−λ)tai(uN2)|= 0,

|λnN1
(ai)+(1−λ)iai(nN1

)−λnN2
(ai)−(1−λ)iai(nN2

)|= 0,

|λvN1
(ai)+(1−λ)fai(vN1

)−λvN2
(ai)−(1−λ)fai(vN2

)|= 0,

⇒λuN1
(ai)+(1−λ)tai(uN1

) =λuN2
(ai)+(1−λ)tai(uN2

),

λnN1(ai)+(1−λ)iai(nN1) =λnN2(ai)+(1−λ)iai(nN2),

λvN1
(ai)+(1−λ)fai(vN1

) =λvN2
(ai)+(1−λ)fai(vN2

),

⇒Ñ1 = Ñ2.

(3) T (Ñ1,Ñ2) = 1− 1

m

m∑
i=1

tan[
π

12
(|λN1

(ai)+(1−λ)tai(uN1
)−λuN2

(ai)−(1−λ)tai(uN2
)|

+ |λnN1(ai)+(1−λ)iai(nN1)−λnN2(ai)−(1−λ)iai(nN2)|

+ |λvN1
(ai)+(1−λ)fai(vN1

)−λvN2
(ai)−(1−λ)fai(vN2

)|)]

= 1− 1

m

m∑
i=1

tan[
π

12
(|λuN2

(ai)+(1−λ)tai(uN2
)−λuN1

(ai)−(1−λ)tai(uN1
)|

+ |λnN2
(ai)+(1−λ)iai(nN2

)−λnN1
(ai)−(1−λ)iai(nN1

)|

+ |λvN2
(ai)+(1−λ)fai(vN2

)−λvN1
(ai)−(1−λ)fai(vN1

)|)] =T (Ñ2,Ñ1).

(4) If Ñ1⊆ Ñ2⊆ Ñ3, then

|λuN1
(ai)+(1−λ)tai(uN1

)−λuN2
(ai)−(1−λ)tai(uN2

)|

≤ |λuN1
(ai)+(1−λ)tai(uN1

)−λuN3
(ai)−(1−λ)tai(uN3

)|,

|λnN1
(ai)+(1−λ)iai(nN1

)−λnN2
(ai)−(1−λ)iai(nN2

)|

≤ |λnN1(ai)+(1−λ)iai(nN1)−λnN3(ai)−(1−λ)iai(nN3)|,

|λvN1
(ai)+(1−λ)fai(vN1

)−λvN2
(ai)+(1−λ)fai(vN2

)|

≤ |λvN1
(ai)+(1−λ)fai(vN1

)−λvN3
(ai)+(1−λ)fai(vN3

)|,



No. 2 GENG Juan-juan et al: Entropy and Similarity Measure for T2SVNSs and Its Application 165

so T (Ñ1,Ñ3)≤T (Ñ1,Ñ2). In the same way,

|λuN2
(ai)+(1−λ)tai(uN2

)−λuN3
(ai)−(1−λ)tai(uN3

)|

≤ |λuN1
(ai)+(1−λ)tai(uN1

)−λuN3
(ai)−(1−λ)tai(uN3

)|,

|λnN2
(ai)+(1−λ)iai(nN2

)−λnN3
(ai)−(1−λ)iai(nN3

)|

≤ |λnN1(ai)+(1−λ)iai(nN1)−λnN3(ai)−(1−λ)iai(nN3)|,

|λvN2
(ai)+(1−λ)fai(vN2

)−λvN3
(ai)+(1−λ)fai(vN3

)|

≤ |λvN1
(ai)+(1−λ)fai(vN1

)−λvN3
(ai)+(1−λ)fai(vN3

)|,

so T (Ñ1,Ñ3)≤T (Ñ2,Ñ3).

Definition 3.2. Assume that Ñ1,Ñ2∈SV2(A), weighted similarity measure based on tangent

function between two T2SVNSs is defined as follows:

TW (Ñ1,Ñ2) = 1−
m∑
i=1

ωitan[
π

12
(|λuN1

(ai)+(1−λ)tai(uN1
)−λuN2

(ai)−(1−λ)tai(uN2
)|

+ |λnN1
(ai)+(1−λ)iai(nN1

)−λnN2
(ai)−(1−λ)iai(nN2

)|

+ |λvN1
(ai)+(1−λ)fai(vN1

)−λvN2
(ai)−(1−λ)fai(vN2

)|)],

(3.2)

here, 0≤λ≤1,
m∑
i=1

ωi= 1.

Theorem 3.2. The defined tangent similarity measure T (Ñ1,Ñ2) of two T2SVNS, the basic

operations are satisfied as follows::

(1) 1≥TW (Ñ1,Ñ2)≥0,

(2) TW (Ñ1,Ñ2)=1 if and only if Ñ1 = Ñ2,

(3) TW (Ñ1,Ñ2)=TW (Ñ2,Ñ1),

(4) if Ñ3∈SV2(A) and Ñ1⊆ Ñ2⊆ Ñ3, then TW (Ñ1,Ñ3)≤TW (Ñ1,Ñ2) and TW (Ñ1,Ñ3)≤
TW (Ñ2,Ñ3).

Proof. (1) Tangent function increases monotonically on the interval [0, π4 ]. It also depends

on the interval [0,1] and
m∑
i=1

ωi= 1. So, 0≤TW (Ñ1,Ñ2)≤1.

(2) For any two T2SVNS Ñ1 and Ñ2, 0≤λ≤1,

Ñ1 = Ñ2

⇒λuN1
(ai)+(1−λ)tai(uN1

) =λuN2
(ai)+(1−λ)tai(uN2

),

λnN1
(ai)+(1−λ)iai(nN1

) =λnN2
(ai)+(1−λ)iai(nN2

),

λvN1(ai)+(1−λ)fai(vN1) =λvN2(ai)+(1−λ)fai(vN2),

⇒|λuN1
(ai)+(1−λ)tai(uN1

)−λuN2
(ai)−(1−λ)tai(uN2

)|= 0,

|λnN1
(ai)+(1−λ)iai(nN1

)−λnN2
(ai)−(1−λ)iai(nN2

)|= 0,

|λvN1
(ai)+(1−λ)fai(vN1

)−λvN2
(ai)−(1−λ)fai(vN2

)|= 0.
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Therefore, TW (Ñ1,Ñ2)=1 for 0≤λ≤1 and
m∑
i=1

ωi= 1.

Conversely,

T (Ñ1,Ñ2) = 1⇒|λuN1
(ai)+(1−λ)tai(uN1

)−λuN2
(ai)−(1−λ)tai(uN2

)|= 0,

|λnN1
(ai)+(1−λ)iai(nN1

)−λnN2
(ai)−(1−λ)iai(nN2

)|= 0,

|λvN1(ai)+(1−λ)fai(vN1)−λvN2(ai)−(1−λ)fai(vN2)|= 0,

⇒λuN1
(ai)+(1−λ)tai(uN1

) =λuN2
(ai)+(1−λ)tai(uN2

),

λnN1
(ai)+(1−λ)iai(nN1

) =λnN2
(ai)+(1−λ)iai(nN2

),

λvN1
(ai)+(1−λ)fai(vN1

) =λvN2
(ai)+(1−λ)fai(vN2

),

⇒Ñ1 = Ñ2.

(3) Lets prove the third question

T (Ñ1,Ñ2) = 1−
m∑
i=1

ωitan[
π

12
(|λuN1

(ai)+(1−λ)tai(uN1
)−λuN2

(ai)−(1−λ)tai(uN2
)|

+ |λnN1
(ai)+(1−λ)iai(nN1

)−λnN2
(ai)−(1−λ)iai(nN2

)|

+ |λvN1
(ai)+(1−λ)fai(vN1

)−λvN2
(ai)−(1−λ)fai(vN2

)|)]

= 1−
m∑
i=1

ωitan[
π

12
(|λuN2(ai)+(1−λ)tai(uN2)−λuN1(ai)−(1−λ)tai(uN1)|

+ |λnN2
(ai)+(1−λ)iai(nN2

)−λnN1
(ai)−(1−λ)iai(nN1

)|

+ |λvN2
(ai)+(1−λ)fai(vN2

)−λvN1
(ai)−(1−λ)fai(vN1

)|)] =T (Ñ2,Ñ1).

(4) If Ñ1⊆ Ñ2⊆ Ñ3, then

|λuN1(ai)+(1−λ)tai(uN1)−λuN2(ai)−(1−λ)tai(uN2)|

≤ |λuN1
(ai)+(1−λ)tai(uN1

)−λuN3
(ai)−(1−λ)tai(uN3

)|,

|λnN1
(ai)+(1−λ)iai(nN1

)−λnN2
(ai)−(1−λ)iai(nN2

)|

≤ |λnN1(ai)+(1−λ)iai(nN1)−λnN3(ai)−(1−λ)iai(nN3)|,

|λvN1
(ai)+(1−λ)fai(vN1

)−λvN2
(ai)+(1−λ)fai(vN2

)|

≤ |λvN1
(ai)+(1−λ)fai(vN1

)−λvN3
(ai)+(1−λ)fai(vN3

)|,

for
m∑
i=1

ωi= 1. From Equation (3.2), TW (Ñ1,Ñ3)≤TW (Ñ1,Ñ2) is getted. In the same way,

|λuN2
(ai)+(1−λ)tai(uN2

)−λuN3
(ai)−(1−λ)tai(uN3

)|

≤ |λuN1
(ai)+(1−λ)tai(uN1

)−λuN3
(ai)−(1−λ)tai(uN3

)|,

|λnN2(ai)+(1−λ)iai(nN2)−λnN3(ai)−(1−λ)iai(nN3)|

≤ |λnN1
(ai)+(1−λ)iai(nN1

)−λnN3
(ai)−(1−λ)iai(nN3

)|,

|λvN2
(ai)+(1−λ)fai(vN2

)−λvN3
(ai)+(1−λ)fai(vN3

)|

≤ |λvN1
(ai)+(1−λ)fai(vN1

)−λvN3
(ai)+(1−λ)fai(vN3

)|,
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for
m∑
i=1

ωi= 1. From Equation (3.2), TW (Ñ1,Ñ3)≤TW (Ñ2,Ñ3) is also getted.

§4. A new entropy measure for T2SVNSs

Definition 4.1. The entropy function of a T2SVNS

Ñ = 〈uNj
(ai),tai(uNj

),nNj
(ai),iai(nNj

),vNj
(ai),fai(vNj

)〉

is defined as follows:

Ej(N) = 1− 1

n

n∑
i=1

[
uNj

(ai)+ tai(uNj
)

2
+
vNj

(ai)+fai(vNj
)

2
] · [1−(nNj

(ai)+ iai(nNj
))]2 (4.1)

ωj =
1−Ej(N)

n−
n∑
j=1

Ej(N)
, (j= 1,2,. ..,n),

(4.2)

here,
n∑
j=1

ωj = 1.

Theorem 4.1. The entropy function Ej(N) satisfies the following properties:

(1) Ej(N) = 0. if uNj
(ai)+ tai(uNj

) = 1, vNj
(ai)+fai(vNj

) = 0,

(2) Ej(N) = 1. if N = (0.5,0.5,0.5,0.5,0.5,0.5),

(3) Ej(N)≥Ej(N
′
). if

uNj (ai)+ tai(uNj )+vNj (ai)+fai(vNj )≤uN ′
j
(ai)+ tai(uN ′

j
)+vN ′

j
(ai)+fai(vN ′

j
),

nNj
(ai)+ iai(nNj

)≥nN ′
j
(ai)+ iai(nN ′

j
).

(4) Ej(N) =Ej(N
c).

Proof. (1) uNj
(ai)+ tai(uNj

) = 1,vNj
(ai)+fai(vNj

) = 0⇒Ej(N) = 1− 1
n

n∑
i=1

[( 1
2 + 1

2 )] = 0.

(2) N = (0.5,0.5,0.5,0.5,0.5,0.5)⇒Ej(N) = 1− 1
n

n∑
i=1

[( 1
2 + 1

2 )×0] = 1−0 = 1.

(3) Lets prove the third question

uNj
(ai)+ tai(uNj

)+vNj
(ai)+fai(vNj

)≤uN ′
j
(ai)+ tai(uN ′

j
)+vN ′

j
(ai)+fai(vN ′

j
),

nNj
(ai)+ iai(nNj

)≥nN ′
j
(ai)+ iai(nN ′

j
)

⇒
n∑
i=1

[
uNj (ai)+ tai(uNj )

2
+
vNj

(ai)+fai(vNj
)

2
] · [1−(nNj

(ai)+ iai(nNj
))]2

≤
n∑
i=1

[
uN ′

j
(ai)+ tai(uN ′

j
)

2
+
vN ′

j
(ai)+fai(vN ′

j
)

2
] · [1−(nN ′

j
(ai)+ iai(nN ′

j
))]2

⇒1− 1

n

n∑
i=1

[
uNj (ai)+ tai(uNj )

2
+
vNj (ai)+fai(vNj )

2
] · [1−(nNj

(ai)+ iai(nNj
))]2

≥1− 1

n

n∑
i=1

[
uN ′

j
(ai)+ tai(uN ′

j
)

2
+
vN ′

j
(ai)+fai(vN ′

j
)

2
] · [1−(nN ′

j
(ai)+ iai(nN ′

j
))]2

⇒Ej(N)≥Ej(N
′
).
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(4) Since 〈uN ,ta(uN ),nN ,ia(nN ),vN ,fa(vN )〉c= 〈vN ,fa(vN ),1−nN ,1− ia(nN ),uN ,ta(uN )〉,
we have Ej(N) =Ej(N

c).

§5. MCGDM method based on the entropy and tangent similarity

measures of T2SVNSs

In this section, a MCGDM approach is presented by tangent similarity measures

for T2SVNSs. Assume that P ={p1,p2,. ..,pd} be a committee of decision makers, A=

{A1,A2,. ..,Ak} be the alternatives, C={C1,C2,. ..,Cs} be the attributes of each alternative.

Then, the following steps are described for finding the best alternative(s).

Step 1: Determination of the T2SVN decision matrix of the decision makers (DMs).

When an expert evaluate the given alternatives Ai under different attributes Cj made by

decision makers Pm(m= 1,2,. ..,d) and represent their values in terms of T2SVNNs pmij . Hence,

decision matrix Pm= (pmij )k×s can be written as follows:

Pm= (pmij )k×s=



C1 C2 ·· · Cs

A1 pm11 pm12 ·· · pm1s

A2 pm21 pm22 ·· · pm2s
...

...
... ·· ·

...

Ak pmk1 pmk2 ·· · pmks

, (5.1)

where pmij = 〈umij ,tmAi
(umij ),n

m
ij ,i

m
Ai

(nmij ),v
m
ij ,f

m
Ai

(vmij )〉.

Step 2: Determination of the aggregating decision matrix.

The aggregating matrix B= (bij)k×s is expressed as follows:

B= (bij)k×s=



b11 b12 ·· · b1s

b21 b22 ·· · b2s

...
... ·· ·

...

bk1 bk2 ·· · bks


, (5.2)

where bij =
d⊕

m=1
(δmd

m
ij ) = (1−

d∏
m=1

(1−umij )δm ,1−
d∏

m=1
(1− tmAi

(uij))
δm ,

d∏
m=1

(nmij )δm ,
d∏

m=1
(imAi

(nN ))δm ,

d∏
m=1

(vmij )δm ,
d∏

m=1
(fmAi

(vij))
δm), δm(m= 1,2, ·· · ,d) is the weight of pm.

Step 3: Determination of the ideal solution.

T2SVN local positive ideal solution (T2SVNPIS) and the T2SVN negative ideal solution
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(T2SVNNIS) are defined as follows:

b∗j = 〈max
i

(1−
d∏

m=1

(1−umij )δm ,max
i

(1−
d∏

m=1

(1− tmAi
(uij))

δm),

min
i

(

d∏
m=1

(nmij )
δm),min

i
(

d∏
m=1

(imAi
(nN ))δm),

min
i

(

d∏
m=1

(vmij )δm),min
i

(

d∏
m=1

(fmAi
(vij))

δm)〉,

(5.3)

b−j = 〈min
i

(1−
d∏

m=1

(1−umij )δm ,min
i

(1−
d∏

m=1

(1− tmAi
(uij))

δm),

max
i

(

d∏
m=1

(nmij )
δm),max

i
(

d∏
m=1

(imAi
(nN ))δm),

max
i

(

d∏
m=1

(vmij )δm),max
i

(

d∏
m=1

(fmAi
(vij))

δm)〉.

(5.4)

Step 4: Determination the weights of attribute.

By Equation (4.2), we can calculate the attribute weights.

Step 5: Determination of separation measures from ideal solutions to each alternatives.

Separation measures d∗i and d−i of each alternative from ideal solutions can be found by

using weighted similarity distance measure formula given in Section 3. Then,
d∗i =

s∑
j=1

ωjT (bij ,b
∗
j )

d−i =
s∑
j=1

ωjT (bij ,b
−
j )

for i= 1,2,. ..,k. (5.5)

Step 6: Calculating the closeness coefficients of alternatives.

CCi=
d−i

d∗i +d−i
for i= 1,2,. ..,k. (5.6)

Step 7: Ranking the alternatives.

The highest value of closeness coefficients CCi, the best alternative Ai is.

§6. Illustrative of the proposed method and comparative analysis

In this part, we first give a numerical example of the low carbon logistics service provider

selection problem provided by Chen et al. [6]. There are three DMs (D1,D2,D3) to evaluate

with four alternatives Ai(i=1,2,3) and three attributes: C1: low-carbon technology, C2: risk

factor, C3: capacity.
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6.1. Illustration of the proposed approach

The complete MCGDM model tangent similarity measure is summarized by the following

steps:

Step 1: Evaluation of alternatives for each criteria by the linguistic terms shown in Table 1.

Tables 2-4 show their evaluations matrix.

Table 1 Evaluations of the alternatives by the linguistic variables.

Grades Ptmf Stmf Pimf Simf Pfmf Sfmf

Very good (Vg) 1.000 1.000 0.000 0.000 0.000 0.000

Good (G) 0.858 0.858 0.238 0.238 0.132 0.132

Medium good (Mg) 0.762 0.762 0.400 0.400 0.238 0.238

Fairly (F) 0.500 0.500 0.500 0.500 0.500 0.500

Medium poor (Mp) 0.248 0.248 0.600 0.600 0.762 0.762

Poor (P) 0.142 0.142 0.762 0.762 0.868 0.868

Very poor (Vp) 0.000 0.000 1.000 1.000 1.000 1.000

Table 2 Linguistic decision matrix by Decision maker D1.

Alternatives C1 C2 C3

A1 (Vg, g, P, Vp, Vp, P) (Vg, Mg, G, Mg, Vp, Mp) (Vg, G, G, Mp, Vp, P)

A2 (G, Mg, F, Vp, P, Mp) (Vg, G, Mp, F, Vp, p) (Mg, F, Mg, G, Mp, F)

A3 (Mg, Mg, Vp, P, F, F) (Vg, Mg, Mg, G, Vp, Mp) (Vg, G, F, F, Vp, P)

Table 3 Linguistic decision matrix by Decision maker D2.

Alternatives C1 C2 C3

A1 (G, Mp, P, Mg, P, Mg) (G, Vg, Vg, G, P, Vp) (G, Vg, Vp, Vg, P, Vp)

A2 (Mg, Mp, Mg, Mp, Mp, Mg) (G, F, P, Mp, P, F) (G, F, G, G, P, F)

A3 (G, Mg, Mg, F, P, Mp) (G, Mg, Mg, P, P, Vp) (G, Vg, Mg, Vp, P, Vp)

D1 =



d11

d12

d13

d21

d22

d23

d31

d32

d33



=



〈1.000,0.858,0.762,1.000,1.000,0.868〉
〈1.000,0.762,0.238,0.400,1.000,0.762〉
〈1.000,0.858,0.238,0.600,1.000,0.868〉
〈0.858,0.762,0.500,1.000,0.868,0.762〉
〈1.000,0.858,0.600,0.500,1.000,0.868〉
〈0.762,0.500,0.400,0.238,0.762,0.500〉
〈0.762,0.762,1.000,0.762,0.500,0.500〉
〈0.762,0.400,0.238,1.000,0.762,1.000〉
〈1.000,0.858,0.500,0.500,1.000,0.868〉



,
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Table 4 Linguistic decision matrix by Decision maker D3.

Alternatives C1 C2 C3

A1 (G, Mg, Mp, Mp, P, Mp) (G, G, Mg, MP, P, P) (G, F, Vg, Vg, P, F)

A2 (Mp, F, F, F, Mg, F) (Mp, Mg, G, G, Mg, Mp) (F, Mg, Mg, Mg, F, Mp)

A3 (P, F, Mp, Mg, G, F) (Vg, G, Vp, Vp, Vp, P) (Vg, Mg, G, F, Vp, Mp)

D2 =



d11

d12

d13

d21

d22

d23

d31

d32

d33



=



〈0.858,0.248,0.762,0.400,0.868,0.238〉
〈0.858,1.000,0.000,0.238,0.868,1.000〉
〈0.858,1.000,1.000,0.000,0.868,1.000〉
〈0.762,0.248,0.400,0.600,0.762,0.238〉
〈0.858,0.500,0.762,0.600,0.868,0.500〉
〈0.858,0.500,0.238,0.238,0.868,0.500〉
〈0.858,0.762,0.400,0.500,0.868,0.762〉
〈0.858,0.762,0.400,0.762,0.868,1.000〉
〈0.858,1.000,0.400,1.000,0.868,1.000〉



,

D3 =



d11

d12

d13

d21

d22

d23

d31

d32

d33



=



〈0.858,0.762,0.600,0.600,0.868,0.762〉
〈0.858,0.858,0.400,0.600,0.868,0.868〉
〈0.858,0.500,0.000,0.000,0.868,0.500〉
〈0.248,0.500,0.500,0.500,0.238,0.500〉
〈0.248,0.762,0.238,0.238,0.238,0.762〉
〈0.500,0.762,0.400,0.400,0.500,0.762〉
〈0.142,0.500,0.600,0.400,0.132,0.500〉
〈1.000,0.858,1.000,1.000,1.000,0.868〉
〈1.000,0.762,0.238,0.500,1.000,0.762〉



.

Step 2: Determination of the aggregating decision matrix B= (bij)k×s.

Assume that the weights of the experts are δ1 = 0.36,δ2 = 0.29 and δ3 = 0.35, respectively. B

matrix can be constructed. For example

b11 =〈1−(1−1.000)0.36 ·(1−0.858)0.29 ·(1−0.858)0.35,

1−(1−0.858)0.36 ·(1−0.248)0.29 ·(1−0.762)0.35,

0.7620.36 ·0.7620.29 ·0.6000.35,

1.0000.36 ·0.4000.29 ·0.6000.35,

1.0000.36 ·0.8680.29 ·0.8680.35,

0.8680.36 ·0.2380.29 ·0.7620.35〉

=〈1.000,0.724,0.701,0.641,0.913,0.570〉.
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Using the same way, we can calculate other values in B matrix as follows:

B=



〈1.000,0.724,0.701,0.641,0.913,0.570〉
〈1.000,1.000,0.000,0.340,0.913,0.863〉
〈1.000,1.000,0.000,0.000,0.913,0.746〉
〈0.704,0.569,0.469,0.677,0.531,0.469〉
〈1.000,0.755,0.465,0.407,0.581,0.707〉
〈0.734,0.614,0.344,0.285,0.683,0.579〉
〈0.679,0.691,0.641,0.538,0.368,0.564〉
〈1.000,0.723,0.457,0.924,0.870,0.952〉
〈1.000,1.000,0.361,0.611,0.960,0.864〉



.

Step 3: Determination of the ideal solution. By using the aggregating matrix, the T2SVN

local positive ideal solution (T2SVNPIS) and the T2SVN negative ideal solution (T2SVNNIS)

are obtained as follows:

B∗=


〈1.000,0.724,0.469,0.538,0.368,0.469〉
〈1.000,1.000,0.000,0.340,0.581,0.707〉
〈1.000,1.000,0.000,0.000,0.683,0.579〉

,

B−=


〈0.679,0.569,0.701,0.677,0.913,0.570〉
〈1.000,0.723,0.465,0.924,0.913,0.952〉
〈0.734,0.614,0.361,0.611,0.960,0.864〉

.
Step 4: Determination of the attribute weights ω by entropy.

By using Equation (4.2), the weights of the attribute can be calculated: ω=[ω1,ω2,ω3]=

[0.7909,0.1213,0.0878]

Step 5: Determination of separation measures from ideal solutions to each alternatives and

relative closeness coefficient.

By Equation (5.5), the separation measures d∗i and d−i are indicated. Relative closeness

coefficient CCi is calculated by using Equation (5.6). lets say that λ=0.55. These results are

listed in Table 5.

Table 5 Distance measure and relative closeness coefficient of each alternative.

Proposed approach d∗i d−i CCi

A1 0.7842 0.8290 0.5138

A2 0.7168 0.4241 0.3717

A3 0.7014 0.2763 0.2826

Step 6: Ranking of the three alternatives.
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According to Table 5, we can get the final ranking of three alternatives, which is A1�A2�A3.

Thus, A1 is the best alternative.

6.2. Comparative analysis and discussion

From Table 5, we know that A1 is the best alternative for different values of λ. However, the

ranking results are different. For confirming the reasonableness and feasibility of the proposed

method, we will compare with current methods to solve the same decision-making problem.

The ranking results from other methods are shown in Table 6. Ranking results from proposed

method with λ=0.10, 0.25, 0.40 are the same as the ranking result of Mondal,s method [23].

Ranking results from proposed method with λ=0.55, 0.70, 0.90 are the same as the ranking

result of Karaaslan,s method [16] and Sahin,s method [28], which are able to show that the

proposed approach is practical and effective.

Table 6 Comparison of other methods.

Methods Final Ranking The Chosen Alternative

Proposed method(λ=0.10, 0.25, 0.40) A2≺A3≺A1 A1

Proposed method(λ=0.55, 0.70, 0.90) A3≺A2≺A1 A1

Mondal et al. [23] A2≺A3≺A1 A1

Karaaslan [16] A3≺A2≺A1 A1

Sahin [28] A3≺A2≺A1 A1

§7. Conclusion

In this paper, we proposed the concepts of SVNS and T2SVNS. Then, we defined tangent

similarity measure, which are also proved in T2SVN environment. We also defined a new

entropy function for determining unknown attribute weights. A new approach for solving

the (MCGDM) problems under T2SVNSenvironment was developed. Finally, we provided an

illustrative example to illustrate the application of the proposed method. The comparative

analysis with the current methods were given to confirm the rationality and feasibility of the

proposed method. It enriches and develops the theory and method of MCGDM, and provides a

new way to solve MCGDM problem. In future research, we will further develop the proposed

similarity measures of the T2SVNS and their application.
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