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Abstract: Some probability inequalities are established for extended negatively dependent

(END) random variables. The inequalities extend some corresponding ones for negatively

associated random variables and negatively orthant dependent random variables. By using

these probability inequalities, we further study the complete convergence for END random

variables. We also obtain the convergence rate O(n−1/2 ln1/2 n) for the strong law of large

numbers, which generalizes and improves the corresponding ones for some known results.
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§1. Introduction

Firstly, let us recall the concept of extended negatively dependent random variables.

Definition 1.1[1] We call random variables {Xn, n ≥ 1} extended negatively dependent
(END, in short) if there exists a constant M > 0 such that both

P (X1 > x1, X2 > x2, · · · , Xn > xn) ≤ M
n∏

i=1

P (Xi > xi) (1.1)

and

P (X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn) ≤ M
n∏

i=1

P (Xi ≤ xi) (1.2)
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hold for each n ≥ 1 and all real numbers x1, x2, · · · , xn.

If M = 1, the random variables are called negatively orthant dependent(NOD, in short).
For more details about NOD random variables, one can refer to Joag-Dev and Proschan[2],
Want et al[3-4], Sung[5], Wu[6], and so forth. The concept of END sequence was introduced by
Liu[1]. Some applications for END sequence have been found. See for example, Liu[1] obtained
the precise large deviations for dependent random variables with heavy tails, Liu[7] studied
the sufficient and necessary conditions of moderate deviations for dependent random variables
with heavy tails, Chen et al[8] for obtained the strong law of large numbers for END random
variables, Shen[9] presented some probability inequalities for END sequence and gave some
applications, Wang and Wang[10] investigated the extended precise large deviations of random
sums in the presence of END structure and consistent variation, and so forth. It is easily
seen that independent random variables and NOD random variables are END. Joag-Dev and
Proschan[2] pointed out that NA random variables are NOD. Thus, NA random variables are
END. Since END random variables are much weaker than independent random variables, NA
random variables and NOD random variables, studying the limit behavior of END sequence is
of interest.

It is well known that the probability inequality plays an important role in various proofs of
limit theorems. We consider the following probability inequality. For proof, one can refer to
Hoeffding[11].

Theorem A If X1, X2, · · · , Xn are independent and ai ≤ Xi ≤ bi(i = 1, 2, · · · , n),
then for any t > 0,

P

(
n∑

i=1

Xi −
n∑

i=1

EXi ≥ nt

)
≤ exp




− 2n2t2

n∑
i=1

(bi − ai)2





, n ≥ 1. (1.3)

Since then the inequality was extended to some cases of dependent sequences, such as negatively
associated(NA, in short) sequence, negatively orthant dependent(NOD, in short) sequence, and
so forth. The main purpose of the paper is to extend Theorem A for independent sequence to the
case of extended negatively dependent(END) sequence, which contains independent sequence,
NA sequence and NOD sequence as special cases. By using the Hoeffding-type inequality, we
further study the complete convergence and strong law of large numbers for END sequence. We
obtain the convergence rate O(n−1/2 ln1/2 n) for the strong law of large numbers, which gener-
alizes and improves the corresponding ones of Kim and Kim[12], Nooghabi and Azarnoosh[13],
Xing et al[14] and Jabbari et al[15].

The following lemmas will be used to prove the main results of the paper.

Lemma 1.1[7] Let random variables X1, X2, · · · , Xn be END.

(i) If f1, f2, · · · , fn are all nondecreasing(or nonincreasing) functions, then random vari-
ables f1(X1), f2(X2), · · · , fn(Xn) are END.

(ii) For each n ≥ 1, there exists a constant M > 0 such that

E




n∏

j=1

X+
j


 ≤ M

n∏

j=1

EX+
j . (1.4)
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Lemma 1.2 If X is a random variable such that a ≤ X ≤ b, where a and b are finite real
numbers, then for any real number h,

EehX ≤ b− EX

b− a
eha +

EX − a

b− a
ehb. (1.5)

Proof Since the exponential function exp (hX) is convex, its graph is bounded above on
the interval a ≤ X ≤ b by the straight line which connects its ordinates at X = a and X = b.
Thus

ehX ≤ ehb − eha

b− a
(X − a) + eha =

b−X

b− a
eha +

X − a

b− a
ehb,

which implies (1.5).

Throughout the paper, let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed

probability space (Ω,F , P ). Denote Sn
.=

n∑
i=1

Xi and B2
n

.=
n∑

i=1

EX2
i for each n ≥ 1. M denotes

a positive constant which may be different in various places.

§2. Main Results and Their Proofs

Theorem 2.1 Let {Xn, n ≥ 1} be a sequence of END random variables. If there exist
two sequences of real numbers {an, n ≥ 1} and {bn, n ≥ 1} such that ai ≤ Xi ≤ bi for each
i ≥ 1, then for any ε > 0 and each n ≥ 1, there exists a constant M > 0 such that

P (Sn − ESn ≥ nε) ≤ Mexp




− 2n2ε2

n∑
i=1

(bi − ai)2





, (2.1)

P (Sn − ESn ≤ −nε) ≤ Mexp




− 2n2ε2

n∑
i=1

(bi − ai)2





(2.2)

and

P (|Sn − ESn| ≥ nε) ≤ 2Mexp




− 2n2ε2

n∑
i=1

(bi − ai)2





. (2.3)

Proof For any h > 0, by Markov’s inequality, we can see that

P (Sn − ESn ≥ nε) ≤ Eeh(Sn−ESn−nε). (2.4)

It follows from Lemma 1.1(ii) that there exists a constant M > 0 such that

Eeh(Sn−ESn−nε) = e−hnεE

(
n∏

i=1

eh(Xi−EXi)

)
≤ Me−hnε

n∏

i=1

Eeh(Xi−EXi). (2.5)

Denote EXi = µi for each i ≥ 1. By ai ≤ Xi ≤ bi and Lemma 1.2, we have

Eeh(Xi−EXi) ≤ e−hµi

(
bi − µi

bi − ai
ehai +

µi − ai

bi − ai
ehbi

)
.= eL(hi), (2.6)
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where
L(hi) = −hipi + ln(1− pi + pie

hi), hi = h(bi − ai), pi =
µi − ai

bi − ai
.

The first two derivatives of L(hi) are

L
′
(hi) = −pi +

pi

(1− pi)e−hi + pi
, L

′′
(hi) =

pi(1− pi)e−hi

[(1− pi)e−hi + pi]
2 . (2.7)

The last ratio is of the form u(1− u), where 0 < u < 1. Hence

L
′′
(hi) =

(1− pi)e−hi

(1− pi)e−hi + pi

(
1− (1− pi)e−hi

(1− pi)e−hi + pi

)
≤ 1

4
. (2.8)

Therefore, by Taylor’s formula and (2.8), we can get

L(hi) ≤ L(0) + L
′
(0)hi +

1
8
h2

i =
1
8
h2

i =
1
8
h2(bi − ai)2. (2.9)

It follows from (2.6) and (2.9) that

Eeh(Xi−EXi) ≤ exp
{

1
8
h2(bi − ai)2

}
. (2.10)

By (2.4), (2.5) and (2.10), we have

P (Sn − ESn ≥ nε) ≤ Mexp

{
−hnε +

1
8
h2

n∑

i=1

(bi − ai)2
}

. (2.11)

It is easily seen that the right-hand side of (2.11) has its minimum at h = 4nε
n∑

i=1
(bi−ai)2

. Inserting

this value in (2.11), we can obtain (2.1) immediately. Since {−Xn, n ≥ 1} is a sequence of END
random variables, (2.1) implies (2.2). (2.1) and (2.2) yield (2.3). The proof is complete.

Corollary 2.1 Let {Xn, n ≥ 1} be a sequence of END random variables with common
distribution function F . Then for any ε > 0 and any x ∈ R, there exists a constant M > 0 such
that

P (Fn(x)− F (x) ≥ ε) ≤ Mexp
{−2nε2

}
, n ≥ 1, (2.12)

P (Fn(x)− F (x) ≤ −ε) ≤ Mexp
{−2nε2

}
, n ≥ 1 (2.13)

and
P (|Fn(x)− F (x)| ≥ ε) ≤ 2Mexp

{−2nε2
}

, n ≥ 1, (2.14)

where Fn(x) = 1
n

n∑
i=1

I(Xi ≤ x) and I(A) stands for the indicator function of the set A.

Proof For fixed x, by Lemma 1.1(i), it is easily seen that {I(Xn ≤ x), n ≥ 1} is a
sequence of END random variables satisfying 0 ≤ I(Xn ≤ x) ≤ 1, n ≥ 1 and E(Fn(x)) = F (x).
Therefore, (2.12)∼(2.14) follow from Theorem 2.1 immediately.

Corollary 2.2 Under the conditions of Corollary 2.1, Fn(x) → F (x) completely for any
x ∈ R.
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Theorem 2.2 Let {Xn, n ≥ 1} be a sequence of END random variables with |Xi| ≤ c <

∞ for each i ≥ 1, where c is a positive constant. Then for any r > 1
2 ,

n−r(Sn − ESn) → 0, completely, n →∞. (2.15)

Proof For any ε > 0, it follows from Theorem 2.1 that

∞∑
n=1

P (|Sn − ESn| ≥ nrε) ≤ 2M
∞∑

n=1

[
exp

(
− ε2

2c2

)]n2r−1

< ∞,

which implies (2.15).

Theorem 2.3 Let {Xn, n ≥ 1} be a sequence of END random variables with EXn = 0
for each n ≥ 1. If there exists a sequence of positive numbers {cn, n ≥ 1} such that |Xi| ≤ ci

for each i ≥ 1, then for any t > 0 and n ≥ 1, there exists a constant M > 0 such that

Eexp

{
t

n∑

i=1

Xi

}
≤ Mexp

{
t2

2

n∑

i=1

etciEX2
i

}
.

Proof It is easy to check that for all x ∈ R, the following inequality holds

ex ≤ 1 + x +
1
2
x2e|x|.

Thus, by EXi = 0 and |Xi| ≤ ci for each i ≥ 1, we have

EetXi ≤ 1 + tEXi +
1
2
t2E

[
X2

i et|Xi|
]

= 1 +
1
2
t2E

[
X2

i et|Xi|
]

≤ 1 +
1
2
t2etciEX2

i

≤ exp
{

1
2
t2etciEX2

i

}
(2.16)

for any t > 0. By Lemma 1.1 and (2.16), there exists a constant M > 0 such that

Eexp

{
t

n∑

i=1

Xi

}
≤ M

n∏

i=1

EetXi ≤ Mexp

{
t2

2

n∑

i=1

etciEX2
i

}
. (2.17)

This completes the proof of the theorem.

Corollary 2.3 Let {Xn, n ≥ 1} be a sequence of END random variables such that
|Xi| ≤ ci for each i ≥ 1, where {cn, n ≥ 1} is a sequence of positive numbers. Then for any
t > 0 and n ≥ 1, there exists a constant M > 0 such that

Eexp

{
t

n∑

i=1

(Xi − EXi)

}
≤ Mexp

{
t2

2

n∑

i=1

e2tciEX2
i

}
. (2.18)

Proof It is easily seen that {Xn − EXn, n ≥ 1} is a sequence of END random variables
with E(Xi − EXi) = 0 and |Xi − EXi| ≤ 2ci for each i ≥ 1. By Theorem 2.3, there exists a
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constant M > 0 such that

Eexp

{
t

n∑

i=1

(Xi − EXi)

}

≤ Mexp

{
t2

2

n∑

i=1

e2tciE(Xi − EXi)2
}

≤ Mexp

{
t2

2

n∑

i=1

e2tciEX2
i

}
.

The proof is complete.

Similarly, we can get the following corollary.

Corollary 2.4 Let {Xn, n ≥ 1} be a sequence of END random variables such that
|Xi| ≤ cn for each 1 ≤ i ≤ n, n ≥ 1, where {cn, n ≥ 1} is a sequence of positive numbers. Then
for any t > 0 and n ≥ 1, there exists a constant M > 0 such that

Eexp

{
t

n∑

i=1

(Xi − EXi)

}
≤ Mexp

{
t2

2
e2tcn

n∑

i=1

EX2
i

}
. (2.19)

Theorem 2.4 Let {Xn, n ≥ 1} be a sequence of END random variables such that |Xi| ≤
cn for each 1 ≤ i ≤ n, n ≥ 1, where {cn, n ≥ 1} is a sequence of positive numbers. Then for
any ε > 0 such that ε ≤ eB2

n/(2cn) and n ≥ 1, there exists a constant M > 0 such that

P

(
n∑

i=1

(Xi − EXi) ≥ ε

)
≤ Mexp

{
− ε2

2eB2
n

}
, (2.20)

P

(
n∑

i=1

(Xi − EXi) ≤ −ε

)
≤ Mexp

{
− ε2

2eB2
n

}
(2.21)

and

P

(∣∣∣∣∣
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ ≥ ε

)
≤ 2Mexp

{
− ε2

2eB2
n

}
. (2.22)

Proof By Markov’s inequality and Corollary 2.4, we have that for any t > 0, there exists
a constant M > 0 such that

P

(
n∑

i=1

(Xi − EXi) ≥ ε

)

≤ e−tεEexp

{
t

n∑

i=1

(Xi − EXi)

}

≤ Mexp
{
−tε +

t2

2
e2tcnB2

n

}
. (2.23)

Taking t = ε/(eB2
n), and noting that 2tcn ≤ 1, we can obtain (2.20). By (2.20),

P

(
n∑

i=1

(Xi − EXi) ≤ −ε

)
= P

(
n∑

i=1

(−Xi − E(−Xi)) ≥ ε

)
≤ Mexp

{
− ε2

2eB2
n

}
, (2.24)
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since {−Xn, n ≥ 1} is a sequence of END random variables. Combining (2.20) with (2.21), we
can get (2.22) immediately. This completes the proof of the theorem.

Corollary 2.5 Let {Xn, n ≥ 1} be a sequence of identically distributed END random
variables. Assume that there exists a positive integer n0 such that |Xi| ≤ cn for each 1 ≤ i ≤ n,
n ≥ n0, where {cn, n ≥ 1} is a sequence of positive numbers. Then for any ε > 0 such that
ε ≤ eEX2

1/(2cn) and n ≥ n0, there exists a constant M > 0 such that

P

(
n∑

i=1

(Xi − EXi) ≥ nε

)
≤ Mexp

{
− nε2

2eEX2
1

}
, (2.25)

P

(
n∑

i=1

(Xi − EXi) ≤ −nε

)
≤ Mexp

{
− nε2

2eEX2
1

}
(2.26)

and

P

(∣∣∣∣∣
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ ≥ nε

)
≤ 2Mexp

{
− nε2

2eEX2
1

}
. (2.27)

Theorem 2.5 Let {Xn, n ≥ 1} be a sequence of identically distributed END random
variables. Assume that there exists a positive integer n0 such that |Xi| ≤ cn for each 1 ≤ i ≤ n,
n ≥ n0, where {cn, n ≥ 1} is a sequence of positive numbers satisfying

0 < cn ≤
(

enEX2
1

8

)1/3

. (2.28)

Denote εn =
√

2eEX2
1cn/n. Then for n ≥ n0, there exists a constant M > 0 such that

P

(
1
n

∣∣∣∣∣
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ ≥ εn

)
≤ 2Me−cn . (2.29)

Proof It is easy to check that 2εncn ≤ eEX2
1 and nε2

n/(2eEX2
1 ) = cn. It follows from

Corollary 2.5 that for n ≥ n0, there exists a constant M > 0 such that

P

(
1
n

∣∣∣∣∣
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ ≥ εn

)
≤ 2Mexp

{
− nε2

n

2eEX2
1

}
= 2Me−cn .

The proof is complete.

Taking cn = δ lnn and δ > 1 in Theorem 2.5, we can get the following result.

Theorem 2.6 Let {Xn, n ≥ 1} be a sequence of identically distributed END random
variables. Assume that there exists a positive integer n0 such that |Xi| ≤ δ lnn for each
1 ≤ i ≤ n, n ≥ n0 and some δ > 1. Denote εn =

√
2δeEX2

1 lnn/n. Then
∞∑

n=1

P

(
1
n

∣∣∣∣∣
n∑

i=1

(Xi − EXi)

∣∣∣∣∣ ≥ εn

)
< ∞. (2.30)

Remark 2.1 Borel–Cantelli lemma implies that 1
n

n∑
i=1

(Xi−EXi) converges almost surely

with growth rate O(n−1/2 ln1/2 n) under the conditions of Theorem 2.6, which generalizes and
improves the corresponding ones of Kim and Kim[12], Nooghabi and Azarnoosh[13], Xing et
al[14] and Jabbari et al[15].
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