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Abstract: Let A be a tame Hecke algebra of type A. A new minimal projective bimodule

resolution for A is constructed and the dimensions of all the Hochschild homology groups

and cyclic homology groups are calculated explicitly.

Key words: Hochschild homology; Hecke algebra; cyclic homology

2000 MR Subject Classification: 16E40, 16E10, 16G10

CLC number: O14.2 Document code: A

Article ID: 1002–0462 (2014) 03–0325–10

§1. Introduction

Hecke algebras play an important role in combinatorics and representation theory. They
arise as deformations of the group algebras of finite Coxeter groups and appear as endomor-
phism algebras of induced representations of finite or p-adic Chevalley groups. They appear as
endomorphism algebras of induced representations of finite or p-adic Chevalley groups and give
rise to the Kazhdan-Lusztig polynomials which appear in the expression of the canonical basis in
terms of the natural basis of Hecke algebras. The Hecke algebra is also present in the geometry
of a semisimple group via the equivariant K-theory of the Steinberg variety. This connection
plays an important role in the Springer correspondence and the Langlands classification. So
there are many good reasons to study the Hecke algebras and their representations.

The methods and techniques of Homological algebra has become an essential tool in the
study of the algebraic structure and representation theory. Using the homological methods
study the Hecke algebras has made a lot of results. In [17], the authors use Hochschild coho-
mology as a tool to explore those deformations of skew group algebras that satisfy an expanded
definition of graded Hecke algebra. In [15], Opdam and Solleveld study the homological proper-
ties of modules over an affine Hecke algebra and prove a comparison result for higher extensions
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of tempered modules when passing to the Schwartz algebra, a certain topological completion
of the affine Hecke algebra. For the symmetric group Sn, in [6] and [12], the authors show that
there are just two Morita types of tame blocks of Hecke algebras Hq(Sn) of type A whenever
q = −1 and charK 6= 2. This two tame blocks are represented by the principal blocks ofH−1(S5)
and H−1(S4), which are Morita equivalent to A = KQ/I and A′ = KQ′/I ′, respectively. Where
the quivers and ideals are as follows

Q : 1ε ::
α // 2 ε̄dd
ᾱ

oo I = 〈αε̄, εα, ᾱε, ε̄ᾱ, ε2 − αᾱ, ε̄2 − ᾱα〉

and
Q′ : 1ε ::

α // 2
ᾱ

oo I ′ = 〈εα, ᾱε, ε2 − (αᾱ)2〉.

By [14], this two Morita types of tame blocks of Hecke algebras Hq(Sn) are generalized Brauer
tree algebras of same type and so that they are derived equivalence. Moreover, the algebras A

and A′ are selfinjective special biserial algebras, and A is even symmetric Koszul. In this paper
we are interested in Hochschild homology of Hecke algebras of type A.

The Hochschild homology and cohomology are subtle variants and derived variants of finite-
dimensional algebra and play a fundamental role in representation theory of associative algebra.
Let Λ be a finite-dimensional algebra(associative with unity) over a field K. Denote by Λe :=
Λop ⊗K Λ the enveloping algebra of Λ. Then the i-th Hochschild homology of Λ is identified
with the K-spaces(see [5])

HHi(Λ) = TorΛ
e

i (Λ, Λ).

Hochschild homology is closely related to the oriented cycle and the global dimension of algebras
[1, 9-11]. But in general, it is hard to calculate all the Hochschild homology for a given finite-
dimensional algebra. For the Hecke algebras of type A, the Hochschild cohomology is calculate
in [7] and [16] and the Hochschild cohomology ring is consider in [16] and [18]. In this paper,
we calculate the K-dimensions of all the Hochschild homology groups of Hecke algebras of type
A by constructing a new minimal projective bimodule resolution for A = KQ/I.

The paper is structured as follows. In Section 2, we give a new minimal bimodule projective
bimodule resolution of A by a family of bases of Koszul dual of A and in Section 3, we use
the closed paths in KQ to give a presentation of the homology complex of A by the minimal
bimodule projective bimodule resolution. Furthermore, the K-dimensions of all the Hochschild
homology groups are calculated and whenever charK = 0, the K-dimensions of all the cyclic
homology groups are given. Since Hochschild homology is invariant under derived equivalence,
our result gives information for arbitrary tame blocks of Hecke algebras of type A.

Throughout this paper, we fix K an algebraically closed field with charK 6= 2, the algebra
A = KQ/I is the symmetric Koszul algebra defined as above and ⊗ := ⊗K. Denote by e and
ē the trivial path at the vertex 1 and 2. For any path p in Q, we denote by o(p) and t(p) the
trivial paths corresponding to the origin and the terminus of p, respectively.
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§2. Minimal Projective Bimodule Resolutions

In this section, we construct a minimal projective bimodule resolution for algebra A by a
family of bases of its Koszul dual.

Note that A is quadratic, we first consider the Koszul dual A! of A. It is easy to see that
A! ∼= KQ/I⊥, where I⊥ is an ideal of KQ generated by {ε2 + αᾱ, ε̄2 + ᾱα}. Since I⊥ is a
homogeneous ideal, A! ∼= KQ/I⊥ =

⊕∞
i=0 A!

i is a positive graded algebra by grading on the
length of paths. Note that the bar involution given by e 7→ ē, ē 7→ e, α 7→ ᾱ, ᾱ 7→ α, ε 7→ ε̄

and ε̄ 7→ ε induces an isomorphism ¯ : A → A and an isomorphism ¯ : A! → A! and it can be
extended to an isomorphism of Ae by aop ⊗ b 7→ āop ⊗ b̄ for all a, b ∈ A. Then, ¯̄a = a for any a

in A or A!.

Denote by (αε̄ᾱε)l the path given by αε̄ᾱε repeat l times with length 4l for any l ≥ 1,
(αε̄ᾱε)0 = e and denote by

θi =





(αε̄ᾱε)l, if i = 4l, l ≥ 1;

(αε̄ᾱε)lα, if i = 4l + 1, l ≥ 0;

(αε̄ᾱε)lαε̄, if i = 4l + 2, l ≥ 0;

(αε̄ᾱε)lαε̄ᾱ, if i = 4l + 3, l ≥ 0.

We have a K-basis of homogeneous space A!
n as following form

Fn = {fn
i = εn−iθi, f̄n

i = ε̄n−iθ̄i | 0 ≤ i ≤ n}

for all n ≥ 0. Clearly, each element f in Fn is a path.

We now let
Pn :=

⊕

f∈F n

Ao(f)⊗ t(f)A.

Define d1 : P1 → P0 by
d1(o(f)⊗ t(f)) = o(f)⊗ f − f ⊗ t(f)

for f ∈ F 1. Whenever n ≥ 2, the differential dn : Pn → Pn−1 is given by

(1) If n is odd,

dn(o(fn
0 )⊗ t(fn

0 )) = o(fn−1
0 )⊗ ε− o(fn−1

1 )⊗ ᾱ− ε⊗ t(fn−1
0 ) + α⊗ t(f̄n−1

2 ),

dn(o(fn
1 )⊗ t(fn

1 )) = o(fn−1
2 )⊗ ε̄ + o(fn−1

0 )⊗ α− ε⊗ t(fn−1
1 )− α⊗ t(f̄n−1

0 )

and for i ≥ 2,

dn(o(fn
i )⊗ t(fn

i )) =





o(fn−1
i−1 )⊗ ε− o(fn−1

i+1 )⊗ ᾱ− ε⊗ t(fn−1
i ) + α⊗ t(f̄n−1

i+2 ), if i = 4l, l ≥ 1;

o(fn−1
i+1 )⊗ ε̄ + o(fn−1

i−1 )⊗ α− ε⊗ t(fn−1
i )− α⊗ t(f̄n−1

i−2 ), if i = 4l + 1, l ≥ 1;

o(fn−1
i−1 )⊗ ε̄− o(fn−1

i+1 )⊗ α− ε⊗ t(fn−1
i ) + α⊗ t(f̄n−1

i+2 ), if i = 4l + 2, l ≥ 0;

o(fn−1
i+1 )⊗ ε + o(fn−1

i−1 )⊗ ᾱ− ε⊗ t(fn−1
i )− α⊗ t(f̄n−1

i−2 ), if i = 4l + 3, l ≥ 0.
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(2) If n is even,

dn(o(fn
0 )⊗ t(fn

0 )) = o(fn−1
0 )⊗ ε− o(fn−1

1 )⊗ ᾱ + ε⊗ t(fn−1
0 )− α⊗ t(f̄n−1

1 )

and for i ≥ 1,

dn(o(fn
i )⊗ t(fn

i )) =





o(fn−1
i−1 )⊗ ε− o(fn−1

i+1 )⊗ ᾱ + ε⊗ t(fn−1
i ) + α⊗ t(f̄n−1

i−2 ), if i = 4l, l ≥ 1;

o(fn−1
i+1 )⊗ ε̄ + o(fn−1

i−1 )⊗ α + ε⊗ t(fn−1
i )− α⊗ t(f̄n−1

i+2 ), if i = 4l + 1, l ≥ 0;

o(fn−1
i−1 )⊗ ε̄− o(fn−1

i+1 )⊗ α + ε⊗ t(fn−1
i ) + α⊗ t(f̄n−1

i−2 ), if i = 4l + 2, l ≥ 0;

o(fn−1
i+1 )⊗ ε + o(fn−1

i−1 )⊗ ᾱ + ε⊗ t(fn−1
i )− α⊗ t(f̄n−1

i+2 ), if i = 4l + 3, l ≥ 0.

In addition, we can define dn(o(f̄n
i )⊗ t(f̄n

i )) by the definition above and the bar involution, for
all f̄n

i ∈ Fn. Then, it is easy to check that P = (Pn, dn) is a complex. Moreover, we have

Proposition 2.1 The complex P = (Pn, dn)

· · · → Pn+1
dn+1−→ Pn → · · · → P2

d2−→ P1
d1−→ P0

π−→ A → 0

is a minimal projective bimodule resolution of A, where π is the multiplication map.

Proof Firstly, by [3, Themrem 2.10.1], the Yoneda algebra E(A) of A is isomorphic to
the Koszul dual A!. Note that for any n ≥ 1 and f ∈ Fn, there is f = f ′λf ′ for some f ′ ∈ Fn−1

and some arrows λf ′ ∈ Q. Denote by

Fn−1
fn

i
= {f ′ ∈ Fn−1 | there is an arrows λf ′ ∈ Q such thatfn

i = f ′λf ′}

for each fn
i ∈ Fn. Then for the maximal semisimple subalgebra A0

∼= A/radA of A, we have a
minimal projective resolution of A0 as right A-module as follows

· · · → P ′n+1

bn+1−→ P ′n → · · · → P ′2
b2−→ P ′1

b1−→ P ′0 −→ A0 → 0,

where P ′n =
⊕

f∈F n t(f)A, the map bn : P ′n → P ′n−1 is given by

t(fn
i )a 7→

∑

f ′∈F n−1
fn

i

(−1)|λ
i
f′ |t(f ′)λf ′a, |λi

f ′ | =





1, if λf ′ = ᾱ, i is even,

or λf ′ = α, i is odd;

0, otherwise .

Therefore, by [8, Theorem 2.1], the minimal projective resolution of A0 induces a minimal
projective bimodule resolution of A and the differential dn is given as above.

§3. Hochschild Homology and Cyclic Homology

In this section we replace the homology complex of A induces by the minimal projective
resolution in Proposition 2.1 by a complex of closed paths in KQ and calculate the K-dimensions
of Hochschild homology groups and cyclic homology groups(in case charK = 0) of A.

Let X and Y be the sets of paths in KQ, then one defines

X ¯ Y = {(p, q) ∈ X × Y | t(p) = o(q) and t(q) = o(p)}
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and denote by K(X ¯ Y ) the vector space spanned by the elements in X ¯ Y . We call a pair
(p, q) is a closed path if t(p) = o(q) and t(q) = o(p). Let B = {e, ē, α, ᾱ, ε, ε̄, ε2, ε̄2} be a
K-basis of the algebra A. Consider the set B ¯ Fn, we have

B ¯ F 0 = {(e, e), (ε, e), (ε2, e), (ē, ē), (ε̄, ē), (ε̄2, ē)}

and when n ≥ 1,

B ¯ Fn =
{
(e, fn

i ), (ε, fn
i ), (ε2, fn

i ), (ē, f̄n
i ), (ε̄, f̄n

i ), (ε̄2, f̄n
i ) | i = 4l or 4l + 3

}

∪ {
(α, fn

i ), (ᾱ, f̄n
i ) | i = 4l + 1 or 4l + 2

}
.

Thus, it is easy to see that

|B ¯ Fn| =




16k + 6 + 2j, if n = 4k + j, j = 0, 1, 2;

16k + 16, if n = 4k + 3.

Applying the functor A⊗Ae− to the minimal projective bimodule resolution P = (Pn, dn) in
Proposition 2.1, we get a homology complex of algebra A. Now, we use vector spaces K(B¯Fn)
to give a presentation of this homology complex.

Lemma 3.1 A ⊗Ae P ∼= N, where the complex N = (Nn, τn), Nn = K(B ¯ Fn) and
differential τn : Nn → Nn−1 is given by: for any (b, fn

i ) in K(B ¯ Fn),

(1) If n is odd,

τn(b, fn
0 ) = (εb, fn−1

0 )− (ᾱb, fn−1
1 )− (bε, fn−1

0 ) + (bα, f̄n−1
2 ),

τn(b, fn
1 ) = (ε̄b, fn−1

2 ) + (αb, fn−1
0 )− (bε, fn−1

1 )− (bα, f̄n−1
0 )

and for i ≥ 2,

τn(b, fn
i ) =





(εb, fn−1
i−1 )− (ᾱb, fn−1

i+1 )− (bε, fn−1
i ) + (bα, f̄n−1

i+2 ), if i = 4l, l ≥ 1;

(ε̄b, fn−1
i+1 ) + (αb, fn−1

i−1 )− (bε, fn−1
i )− (bα, f̄n−1

i−2 ), if i = 4l + 1, l ≥ 1;

(ε̄b, fn−1
i−1 )− (αb, fn−1

i+1 )− (bε, fn−1
i ) + (bα, f̄n−1

i+2 ), if i = 4l + 2, l ≥ 0;

(εb, fn−1
i+1 ) + (ᾱb, fn−1

i−1 )− (bε, fn−1
i )− (bα, f̄n−1

i−2 ), if i = 4l + 3, l ≥ 0.

(2) If n is even,

τn(b, fn
0 ) = (εb, fn−1

0 )− (ᾱb, fn−1
1 ) + (bε, fn−1

0 )− (bα, f̄n−1
2 )

and for i ≥ 1,

τn(b, fn
i ) =





(εb, fn−1
i−1 )− (ᾱb, fn−1

i+1 ) + (bε, fn−1
i ) + (bα, f̄n−1

i−2 ), if i = 4l, l ≥ 1;

(ε̄b, fn−1
i+1 ) + (αb, fn−1

i−1 ) + (bε, fn−1
i )− (bα, f̄n−1

i+2 ), if i = 4l + 1, l ≥ 0;

(ε̄b, fn−1
i−1 )− (αb, fn−1

i+1 ) + (bε, fn−1
i ) + (bα, f̄n−1

i−2 ), if i = 4l + 2, l ≥ 0;

(εb, fn−1
i+1 ) + (ᾱb, fn−1

i−1 ) + (bε, fn−1
i )− (bα, f̄n−1

i+2 ), if i = 4l + 3, l ≥ 0

and the corresponding formulae for (b, f̄n
i ) is induces by τn(b, fn

i ) and the bar involution.
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Proof Let A0 be the maximal semisimple subalgebra of A. Then one can check that

A⊗Ae Pn = A⊗Ae
0

⊕

f∈F n

(o(f)⊗K t(f)) ∼=
⊕

α,β∈{e, ē}
αAβ ⊗K βFnα ∼= Nn.

Moreover, from the isomorphisms above, we have the commutative diagram

· · · - A⊗Ae Pn
-1⊗ dn A⊗Ae Pn−1

- · · ·

?
∼= ?

∼=
· · · - K(B ¯ Fn) -τn K(B ¯ Fn−1) - · · ·

So the differentials τn can be induced by dn in the minimal projective resolution P.

Thus, by the definition, HHn(A) = Kerτn/Imτn+1 and so that

dimKHHn(A) = dimKKerτn − dimKImτn+1

= dimKNn − dimKImτn − dimKImτn+1.

Consequently, to calculate the K-dimensions of Hochschild homology groups of A, we only need
to determine dimKImτn for all n ≥ 0, since dimKNn = |B ¯ Fn|. Firstly, we define an order on
B by

e ≺ ε ≺ ε2 ≺ α ≺ ē ≺ ε̄ ≺ ε̄2 ≺ ᾱ

and define an order on B ¯ Fn by the following relation

(b, fn
i ) ≺ (b′, fn

i′ ) if b ≺ b′ or b = b′ but i < i′,

for any (b, fn
i ), (b′, fn

i′ ) ∈ B¯Fn. Next, we will give the matrix of τn under the ordered bases
defined above and show the K-dimension of τn by this matrix.

We denote still by τn the matrix of the differentials τn under the ordered bases above.
Firstly, for n = 1, 2, 3, direct computations show that

rankτ1 = 1; rankτ2 = 4; rankτ3 = 3

and so that

HH0(A) = 5; HH1(A) = 3; HH2(A) = 3.

Secondly, for n ≥ 4, we write

U =

(
1 1

1 1

)
, V =

(
−1 1

1 −1

)
, X =

(
0 1

−1 0

)
, Y =

(
−1 0

0 1

)
.
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Then, one can check that the matrix τn has following form



0 0 0 0 0 0 0 0

A 0 0 0 0 0 0 0

0 A 0 D 0 0 0 E

B 0 0 0 C 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 A 0 0 0

0 0 0 E 0 A 0 D

C 0 0 0 B 0 0 0




,

where

(1) If n = 4k (k ≥ 1), then τn is a 16k × (16k + 6) matrix with 2k × (2k + 1) matrices

A =




2

A1

. . .

Ak−1

A′




, B =




0

B′ B1

. . .

Bk−1

B′′




, C =




C1

. . .

Ck 0




and 2k × 2k matrices

D =




D1

. . .

Dk


, E =




E1

. . .

Ek


,

where A1 = · · · = Ak−1 = U , A′ = ( 1 1 ), B′ =
(−1

0

)
, B′′ = ( 0 1 ), B1 = · · · = Bk−1 =

D1 = · · · = Dk = X and C1 = · · · = Ck = −E1 = · · · = −Ek = Y ;

(2) If n = 4k + 1 (k ≥ 1), then τn is a (16k + 6)× (16k + 8) matrix with (2k + 1)× (2k + 1)
matrices

A =




0

A1

. . .

Ak


, D =




1

D1

. . .

Dk


, E =




−1

E1

. . .

Ek




and 2k × (2k + 1) matrices

B =




B1

. . .

Bk 0


, C =




C1

. . .

Ck 0


,

where A1 = · · · = Ak = V , B1 = · · · = Bk = E1 = · · · = Ek = −X and C1 = · · · = Ck = D1 =
· · · = Dk = Y ;

(3) If n = 4k +2 (k ≥ 1), then τn is a (16k +8)× (16k +10) matrix with (2k +1)× (2k +1)
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matrices

A =




2

A1

. . .

Ak


, B =




0

B′ B1

. . .

Bk


, C =




−1

C1

. . .

Ck




and (2k + 1)× (2k + 2) matrices

D =




D1

. . .

Dk

D′


, E =




E1

. . .

Ek

E′


,

where A1 = · · · = Ak−1 = U , B′ =
(−1

0

)
, D′ = ( 0 1 ), E′ = ( 1 0 ), B1 = · · · = Bk = D1 =

· · · = Dk = X and C1 = · · · = Ck = E1 = · · · = Ek = −Y ;

(4) If n = 4k +3 (k ≥ 1), then τn is a (16k +10)× (16k +16) matrix with (2k +1)× (2k +2)
matrices

A =




0

A1

. . .

Ak 0


, D =




−1

D1

. . .

Dk 0


, E =




1

E1

. . .

Ek 0




and (2k + 2)× (2k + 2) matrices

B =




B1

. . .

Bk+1


, C =




C1

. . .

Ck+1


,

where A1 = · · · = Ak = V , B1 = · · · = Bk = D1 = · · · = Dk = −X and C1 = · · · = Ck = E1 =
· · · = Ek = Y .

Therefore, we obtain the rank of τn, for all n ≥ 4 as follows

Lemma 3.2 For the differential τn(n ≥ 4), we have

dimKImτn =





7k + 2, if n = 4k, k ≥ 1;

7k + 1, if n = 4k + 1, k ≥ 1;

7k + 4, if n = 4k + 2, k ≥ 1;

7k + 3, if n = 4k + 3, k ≥ 1.

Proof Denote by G :=




A 0

B C

0 A

C B


 and H :=

(
A D 0 E

0 E A D

)
. Then, it is easy to see

that dimKImτn = rankτn = rankG + rankH. By the elementary transformations, we have

rankG =





3k + 2, if n = 4k + j, j = 0, 1, 2, k ≥ 1;

3k + 4, if n = 4k + 3, k ≥ 1
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and

rankH =





4k, if n = 4k, k ≥ 1;

4k − 1, if n = 4k + 1 or 4k + 3, k ≥ 1;

4k + 2, if n = 4k + 2, k ≥ 1.

Thus, we get the lemma.

Theorem 3.1 Let A be a tame Hecke algebra of type A. Then for n ≥ 1,

dimKHHn(A) =





2k + 3, if n = 4k + j, j = 0, 1, 2, k ≥ 1;

2k + 4, if n = 4k + 3, k ≥ 1.

Proof Note that

dimKNn =





16k + 6 + 2j, if n = 4k + j, j = 0, 1, 2;

16k + 16, if n = 4k + 3.

This theorem following from

dimKHHn(A) = dimKNn − dimKImτn − dimKImτn+1.

and Lemma 3.2 directly.

Denote by HCn(A) the n-th cyclic homology group of A(cf [13]).

Corollary 3.1 If charK = 0, then we have

dimKHCn(A) =





k, if n = 4k + 1;

k + 5, if n = 4k or 4k + 2;

k + 1, if n = 4k + 3.

Proof By [13, Theorem 4.1.13], we have

dimKHCn(A)− dimKHCn(K2) = −(dimKHCn−1(A)− dimKHCn−1(K2))

+(dimKHHn(A)− dimKHHn(K2)).

Thus dimKHCn(A)− dimKHCn(K2) =
n∑

i=0

(−1)n−i(dimKHHi(A)− dimKHHi(K2)).

Moreover, it is well-known that

dimKHHi(K2) =





2, if i = 0

0, if i ≥ 1
and dimKHCi(K2) =





2, if i is even;

0, if i is odd.

Thus, by Theorem 3.1, we can obtain this corollary directly.

Remark 3.1 Dieter Happel in [10] asked the following question: if the Hochschild coho-
mology groups HHn(Λ) of a finite dimensional algebra Λ over a field k vanish for all sufficiently
large n, is the global dimension of Λ finite? The paper [2] have given a negative answer by the
four dimensional algebra K〈x, y〉/(x2, xy − qyx, y2).
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In [9], Han conjectured that the homology of Happel’s question would always hold, namely
that a finite-dimensional algebra whose higher Hochschild homology groups vanish must be
of finite global dimension. It is known that Han’s conjecture holds for commutative algebras,
monomial algebras [1, 9]. If the characteristic of the ground field is zero, Han’s conjecture
also holds for N-Koszul algebras, graded local algebras, graded cellular algebras [4]. Our results
show that the tame Hecke algebras of type A also provide a positive answer to Han’s conjecture.
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