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Abstract: This paper is concerned with the boundedness and asymptotic behavior of pos-

itive solutions for a generalized difference equation arising from automatic control theory.

The main results improve and extend the ones in the previous works to a large extent. One

in particular is that Rouche’s theorem is available to prove the convergence of solutions.
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§1. Introduction

As a discrete analogue of differential or delay differential equation, difference equation arises
naturally in various scientific branches[1-5]. Recently the so-called max-type difference equation
has been receiving great attention(see [6-12]). Many particular works have been previously
finished, mostly by Stević and his collaborators. One can refer to [7, 8, 12-14, 17-18], as well
as the references therein. The present problem is about the boundedness and behavior of
positive solutions for a generalized max-type difference equation from automatic control theory
[2, 15-16]. As we all know, this is an important issue since it is a basic precondition for the
establishment of stability or periodicity of all solutions to the equation.

As a generalized equation and a continuation of previous work, in [12] they proposed the
necessity of investigating a new research direction

xn+1 = max{A,
xp

n

xq
n−kxr

n−m

}, n ∈ N0. (1.1)
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Indeed the behavior of Eq (1.1) is very complicated. Here, as a primary extension, we study
the positive solutions to a special case of Eq (1.1) as follow

xn+1 = max{A,
xp

n

xq
n−1x

r
n−k

}, n ∈ N0, (1.2)

where k ≥ 2 and A, p, q, r are positive numbers.

§2. Boundedness of Solutions

In this section, we investigate the boundedness character of the positive solutions to Eq
(1.2).

Theorem 2.1 Assume that p ≤ 1 + q + r. If 1 < q < p2 < 4q or p+
√

p2−4q

2 > 1, then all
positive solutions to Eq (1.2) are bounded.

Proof Remark Eq (1.2) as the following form
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By the definition of xn produced by Eq (1.2), we can deduce
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}, n > k + 1, (2.2)

we can see that if p2 < q, then from (2.2) it yields

xn+1 = max{A,
Ap

Aq+r
,

1
Ar+q+pq+rq−p2 }, (2.3)

which implies the boundedness of solutions in this case.

Now assume that p2 > q. From (2.2), by continuing with iterations, we have
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(2.4)

here al+1 = q/(p− al) with a0 = 0 and a1 = q/p.
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Since p2 > q, we have

0 = a0 < a1 = q/p < a2 = q/(p− q/p). (2.5)

By mathematical induction, it is easy to deduce

al < al+1, (2.6)

which implies that the sequence {al} is strictly increasing.

In what follows, we prove the sequence {al} is bounded. Remark that the polynomial

P (λ) = λ(p− λ)− q. (2.7)

If the condition 1 < q < p2 < 4q or p+
√

p2−4q

2 > 1 holds, which implies that the modulus
of complex or real root is greater than one, then from this it follows that {al} is unbounded.
Hence there is the least l0 ∈ N such that al0 < p and al0+1 ≥ p. Using this fact and (2.4) with
l = l0 + 1, it follows that
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(2.8)

from which the boundedness of the sequence xn yields, as desired.

§3. Behavior of Solutions

In this section we consider the asymptotic behavior of the positive solution of (1.2). Without
loss of generality, first considering the difference equation

xn+1 = max{1,
xp

n

xq
n−1x

r
n−k

}, n ∈ N0, (3.1)

with positive initial data x0, x−1, · · · , x−k and A = 1.

Obviously, by the change xn = Byn with B > 1, Eq (3.1) is transformed into the following
difference equation

yn+1 = max{0, pyn − qyn−1 − ryn−k}. (3.2)

which implies that yn ≥ 0 for n ∈ N, n > k. From here we can obtain a set of initial data
y0, y−1, · · · , and y−k. Furthermore, by iterating this step, we can get a set of positive data
yk+1, yk, · · · , and y1. To this end, we have the following result in this case.

Theorem 3.1 Let {xn} be a solution of Eq (3.1). Assume p ≤ 1 holds. Then {xn}
converges to x∗ = 1.

Proof It is clear that the new set of data yk+1, yk, · · · , and y1 produced by iteration of
Eq (3.2) are nonnegative.
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If pyk+1− qyk− ry1 ≤ 0, then we have yk+2 = 0. Furtherly, yk+3 = max{0, pyk+2− qyk+1−
ry3} = max{0,−qyk+1−ry3} = 0 and yk+4 = max{0, pyk+3−qyk+2−ry4} = max{0,−ry4} = 0.
Iterate the procedure, we have yn = 0 for n > k + 1.

Otherwise, if pyk+1 − qyk − ry1 > 0, at this moment, we have

yk+2 = max{0, pyk+1 − qyk − ry1} = pyk+1 − qyk − ry1. (3.3)

Namely,
yk+2 + qyk + ry1 = pyk+1. (3.4)

Therefore, yk+2 ≤ pyk+1. Since p ≤ 1, it follows yk+2 ≤ yk+1. Iterating this step, if there exists
a N > k+2 such that pyN−qyN−1−ryN−k ≤ 0, then it will become the first case which implies
the convergence of solutions. If not like this case, for any n > k + 1, pyn − qyn − ryn−k > 0.
From this it follows yn+1 ≤ pyn ≤ yn with the assumption p ≤ 1. Indeed we obtain a monotone
decreasing sequence {yn} with n > k + 1. Due to the positivity of {yn}, we can deduce there
exists a limit denoted by y∗ such that lim

n→∞
yn = y∗. Since 1 + q + r > 1 ≥ p, it follows y∗ = 0

from the equality (3.4). All arguments above with the help of the change xn = Byn with B > 1
conclude our proof.

Next we consider the case of A > 1. The change xn = Ayn carries Eq (3.1) into the difference
equation

yn+1 = max{1, pyn − qyn−1 − ryn−k}.
which implies that yn+1 ≥ 1 for n > k. Moreover, we can rewrite it to the following form

yn+1 − 1 = max{0, pyn − qyn−1 − ryn−k − 1},

which is almost the same sequence with Eq (3.2). Therefore we have the following corollary by
the similar arguments in Theorem 3.1.

Corollary 3.1 Let {xn} be a solution of Eq (1.2). Assume p ≤ 1, then {xn} converges
to x∗ = A. In addition, if p− q − r > 1, and initial data x−k, · · · , x−1, x0 are not greater than
x0, and at least one data is greater than one.the solution {xn} is a divergent sequence.

Finally we consider the case of A < 1. At this moment, the same change xn = Ayn yields
the following equation

yn+1 = min{1, pyn − qyn−1 − ryn−k}, (3.5)

which implies 0 ≤ yn+1 ≤ 1 for n > k. By Rouche’s theorem, we can obtain the following
result.

Theorem 3.2 Let {xn} be a solution of Eq (1.2). If one of the following assumptions (i)
p− q − r ≥ 1; (ii) max{p, q, r} ≤ 1

3 holds . Then {xn} converges to x∗ = A.

Proof If there exists N ∈ N, N > k such that pyN − qyN−1− ryN−k ≥ 1, then from (3.5)
we have yN+1 = 1. Moreover, it can be derived p−q−r ≤ yN+2 ≤ p. According the hypothesis
condition, (i) and Eq (3.5), it follows 1 ≤ p − q − r ≤ yN+2 ≤ p which implies yN+2 = 1. By
iterating this process, we have yn = 1 for n > N , which yields the convergence of solution {xn}
with the help of the change above.
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Otherwise, for any n ∈ N, if pyn − qyn−1 − ryn−k < 1, then we have

yn+1 = pyn − qyn−1 − ryn−k. (3.6)

The characteristic polynomial associated with Eq (3.6) is

P (λ) = λk+1 − pλk + qλk−1 + r. (3.7)

Let f(z) = zk+1 and g(z) = pzk − qzk−1 − r. Note that the condition max{p, q, r} ≤ 1
3 , we

have that on the unit circle |z| = 1,

|g(z)| ≤ |pzk − qzk−1 − r|
≤ max{p, q, r}(|z|k + |z|k−1 + 1)

≤ 3max{p, q, r} ≤ 1 = |z|k+1 = |f(z)|.
(3.8)

By Rouche’s theorem it follows that the polynomials f(z) and f(z)−g(z) have the same number
of zeroes in the unit disk |z| < 1. Since f(z) has k + 1 zeroes in the unit disk, it follows that
the polynomial f(z)− g(z) = zk+1 − pzk + qzk−1 + r has also k + 1 zeroes in the unit disk.

Let λ1, · · · , λu(u ≤ k−1) be different zeroes of the polynomial f −g, with the multiplicities
vj , j = 1, · · · , u. Then

yn+1 =
u∑

j=1

zj(n)λn
j , (3.9)

for some polynomials zj , j = 1, · · · , u. Clearly yn+1 converges, which along with the change
xn = Ayn implies that the sequences {xn} converge too, denoted by x∗. From Eq (3.6) and the
hypothesis condition we have x∗ = A.

Remark The hypothesis conditions (ii) in Theorem 3 can be further rewritten into much
precise and exact ones. Namely, (iii) max{q, r} ≤ 1−p

2 for p ≤ 1 or (iv) max{p, r} ≤ 1−q
2 for

q ≤ 1 or (v) max{p, q} ≤ 1−r
2 for r ≤ 1. Indeed if let f(z) = zk+1−pzk and g(z) = qzk−1 +r or

f(z) = zk+1 +qzk−1 and g(z) = pzk−r or f(z) = zk+1 +r and g(z) = pzk−qzk−1, respectively.
The same analysis approach is applied to the assumption (iii), (iv) and (v), which follows our
claim.
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