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Abstract: According to the World Health Organization, about 50 million people world-

wide suffer from epilepsy. The detection and treatment of epilepsy face great challenges.

Electroencephalogram (EEG) is a significant research object widely used in diagnosis and

treatment of epilepsy. In this paper, an adaptive feature learning model for EEG signals

is proposed, which combines Huber loss function with adaptive weight penalty term.

Firstly, each EEG signal is decomposed by intrinsic time-scale decomposition. Secondly,

the statistical index values are calculated from the instantaneous amplitude and frequency

of every component and fed into the proposed model. Finally, the discriminative features

learned by the proposed model are used to detect seizures. Our main innovation is to

consider a highly flexible penalization based on Huber loss function, which can set different

weights according to the influence of different features on epilepsy detection. Besides, the

new model can be solved by proximal alternating direction multiplier method, which can

effectively ensure the convergence of the algorithm. The performance of the proposed

method is evaluated on three public EEG datasets provided by the Bonn University,

Childrens Hospital Boston-Massachusetts Institute of Technology, and Neurological and

Sleep Center at Hauz Khas, New Delhi(New Delhi Epilepsy data). The recognition

accuracy on these two datasets is 98% and 99.05%, respectively, indicating the application

value of the new model.
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§1. Introduction

Epilepsy is a complex disease of human brain, which has a bad effect on patients’ lives.

The World Health Organization reports that about 50 million people worldwide suffer from

epilepsy [55]. Fortunately, up to 70 percent of patients can survive if they are diagnosed and

treated timely. Long-term irregular epileptic seizures not only bring physical pain to the patient,

but also cause serious burden to the patient’s family. Electroencephalogram (EEG) can indicate

the brain’s electrical activities associated with epilepsies [47], and it can accurately record the

scattered slow spike or irregular spike signals during epileptic seizure. Hence, EEG can help

doctors diagnose epilepsies and rationally use antiepileptic drugs. However, reading continuous

EEG signals is a time-consuming and tedious process, and data analyzing is not efficient. As

the number of channels increases, this problem becomes more pronounced. Therefore, it has

become an urgent and vital task to develop a rapid and reliable method to assist neuroscientists

in identifying epilepsies from EEG recordings. With the development of artificial intelligence,

rapid progress has been made in the study of EEG signals, and the automatic detection of EEG

signal has been deeply concerned by researchers.

EEG signal is non-stationary and nonlinear, which makes the automatic detection and

analysis still a challenging problem. Time domain analysis was applied to directly extract feature

waves in EEG signals that are similar to the epilepsy signal [34]. However, the information

obtained from the time domain is hard to get the expected recognition accuracy. Therefore, some

researchers used time-frequency analysis to extract the features of EEG signals [5, 31]. In recent

years, some scholars have found new ways from the perspective of establishing or improving

optimization models. Some optimization models can learn EEG features adaptively [26, 27].

And many algorithms have been developed to provide ideas for solving these optimization

models [6, 28, 36, 44]. The extracted features from the optimization models usually show better

performance than features extracted manually. By introducing different regularization terms

to the optimization model, the EEG features corresponding to each dataset can be extracted.

The regularization terms used popularly are L1 norm, L2 norm, or a combination of both.

After obtaining EEG features through the optimization model, the automatic detection of

epileptic seizures can be achieved by choosing appropriate classifiers, such as random forest

(RF), support vector machine (SVM) and feedforward neural network (FNN) [7,9,22]. Deep

learning methods are increasingly applied to EEG signals [10, 50]. The main advantage of

deep learning models is that original data can be directly input into the network without

feature extraction and the output is the detection result, that is, feature extraction and epilepsy

detection process are integrated into a network. Deep convolutional neural networks (CNN),

deep belief networks (DBN) and long short term memory networks (LSTM) have been applied

to EEG signal recognition [18,20, 51]. However, the training process of deep learning requires a
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large amount of training data, which is difficult to achieve in epilepsy detection. In order to

obtain sufficient training data, some researchers have tried to use sliding windows to segment

EEG signals, but the results were not satisfactory. In this paper, we propose an EEG feature

learning model called Adaptive Huber(A-Huber), which combines adaptive weight with Huber

loss function, and the experimental results show that the A-Huber model can obtain preferable

recognition accuracy on different epilepsy datasets.

The organization of this study is as follows. Section 2 describes the datasets used in the

experiments and introduces the relevant literature. Section 3 gives the proposed adaptive feature

learning model and the algorithm for solving the model. Section 4 applies the proposed model to

three public EEG datasets and analyzes the experimental results. Section 5 discuss the effects

of adaptive weights. Section 6 gives the conclusion and future work.

§2. Dataset and literature review

2.1. Dataset

In this study, three EEG datasets are used to test the performance of the proposed model.

They are all available public and come from Bonn University, Childrens Hospital Boston-

Massachusetts Institute of Technology (CHB-MIT), and Neurological and Sleep Center at Hauz

Khas(New Delhi Epilepsy data), and are commonly used in the recognition of epilepsy.

2.1.1. Bonn dataset Bonn dataset is collected through an amplifier system, which has

128 channels and digitized on 12-bit A/D converter. It consists of five subsets from different

classes, denoted as A, B, C, D, and E. Each subset contains 100 single-channel EEG signals,

the duration of every recording is 23.6 seconds and the sampling frequency is 173.61 Hz. A

summary description of the dataset is provided in Table1. Please refer to [4] for more detailed

description of the Bonn dataset.

Table 1 Description of Bonn dataset.

Set A Set B Set C Set D Set E

Subjects Healthy Healthy Epileptic Epileptic Epileptic

State Eyes opened Eyes closed Interictal Interictal Ictal

Electrode International International Opposite to Within Within

placement 10-20 system 10-20 system epileptogenic zone epileptogenic zone epileptogeniz zone

Number 100 100 100 100 100

Time duration 23.6s 23.6s 23.6s 23.6s 23.6s

Sample rate 173.61 Hz 173.61 Hz 173.61 Hz 173.61 Hz 173.61 Hz

2.1.2. CHB-MIT dataset The CHB-MIT dataset1 consists of 24 EEG signal sets from

two groups of subjects. The first group recorded EEG signals from 22 subjects (5 males, ages

1https://physionet.org/content/chbmit/1.0.0/
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3-22; 17 females, ages 1.5-19), and a total of 23 EEG signal sets were obtained, where chb21 was

the data of chb01 after 1.5 years. The second group recorded the EEG signals of one subject.

Each subset contained between 9 and 42 consecutive edf files. The sampling rate of all signals is

256Hz and the resolution is 16 bits. This data was recorded by using an international 10-20

EEG electrode location and naming system.

2.1.3. New Delhi epilepsy dataset The dataset2 consists of the EEG signals of 10

epilepsy patients from Neurology and Sleep Centre, Hauz Khas, New Delhi, and was obtained

by using Grass Telefactor Comet AS40 Amplification System. The signals were filtered by a

bandpass filter with a frequency range of 0.5-70 Hz and then segmented into preictal, interictal

and ictal stages. Every folder contains fifty MAT-files of EEG time series signals, and each

MAT-file consists of 1024 samples of one EEG time series data with a duration of 5.12 seconds.

A summary description of the dataset is provided in Table 2.

Table 2 Description of new Delhi epilepsy data.

Interictal Preictal Ictal

Number 50 50 50

Time duration 5.12s 5.12s 5.12s

Sample rate 200 Hz 200 Hz 200 Hz

Placement 10-20 system 10-20 system 10-20 system

2.2. Literature review

Decomposition is a technique widely used in EEG feature extraction. Gotman [16] proposed

to decompose all EEG signals into several half-wave signals. Then the average amplitude,

average duration and coefficient of the decomposed half-wave signals are extracted as the

features for epilepsy recognition. Polat [38] applied fast Fourier transform to EEG signals and

calculated power spectral density (PSDs) as the features of EEG signals. They considered a

binary classification problem (AvsE on Bonn dataset) and chose decision tree (DT) classifier.

Finally, the accuracy reached 98.72%. Li [32] used wavelet transform and envelope analysis to

extract EEG features. The neural network ensemble was used as the classifier and the accuracy

of 98.78% was obtained. In recent years, Gupta and Pachori [19] proposed the Fourier-Bessel

series expansion method (FBSE), used to extract the rhythm features of EEG signals based on

weighted multiscale Renyi permutation entropy (WMRPE). The highest accuracy of the binary

classification problems of AvsE, BvsE, CvsE and DvsE on Bonn dataset were 99.5%, 99.5%,

99.5% and 97.5%, respectively. Besides, Empirical mode decomposition (EMD) and intrinsic

2https://www.researchgate.net/publication/308719109
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time-scale decomposition (ITD) were also applied to EEG characteristic extraction [14,23]. Both

EMD and ITD can decompose EEG signals into multiple components of different frequencies.

For every frequency component, its instantaneous amplitude and instantaneous frequency are

suitable to further extract features since they contain a lot of physiological and pathological

information [33, 40, 56]. However, these decomposition techniques have some shortcomings, such

as end-effects, mode mixing, and non-robustness to noise, which limit their applications [21,57,58].

The performance of classification based on decomposition methods depends on manual

extraction of features. However, the features extracted manually have subjective consciousness

which limit its robustness. Therefore, researchers begin to consider automatic feature learning

from EEG data. Hussein et al. [27] applied LASSO model to EEG feature learning, and

conducted experiments to test the performance of the model. Moreover, they noticed that the

LASSO model can not maintain high levels of performance with severe noise. The reason is

that when there are outliers in the samples, the L2 loss function will give higher weights to

the outliers, which reduces the feature learning ability of the model. Hence, Hussein et al. [26]

proposed a robust feature extraction model, which replaced the L2 loss function in LASSO

model with L1 loss function. The experimental results showed that the model can perform well

even under severe noise levels. L1 loss function can effectively alleviate the influence of sample

outliers. However, all components of the regression coefficient vector are punished to the same

extent in the two models mentioned above, so that the contributions of different features are

ignored. Based on this, we construct a feature learning model called adaptive Huber (A-Huber)

in this paper. On the one hand, the adaptive weights of the regression coefficients are considered

in the new model. On the other hand, the A-Huber model employs the Huber loss function

to combine the advantages of L1 and L2 loss functions. Experiments show that the A-Huber

model has good performance.

§3. Methodology

3.1. The Huber loss function

In regression analysis, the L2 loss function is susceptible to outliers, which will affect the

performance of regression prediction. In order to weaken the influence of outliers on regression

results, Edgeworth et al. [13] proposed the regression estimation based on L1 loss. Further,

Huber proposed a robust loss function [24], which can effectively balance L2 loss and L1 loss.

For an ginven positive real number c, the Huber loss function H(u) is as follows:

H(u) =


1

2
u2
i , |ui |≤ c,

c |ui |−
1

2
c2, |ui |> c.

(3.1)

From the definition (3.1), it can be seen that the Huber function is quadratic when u is

less than or equal to the parameter c, and it grows linearly when u is greater than parameter

c. The parameter c describes where the transition from quadratic function to linear function
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takes place. In 1973, Huber proved the large sample properties of Huber’s regression coefficient

estimators [25]. Huber loss function integrates the advantages of L2 loss and L1 loss, which is

more robust to outliers.

3.2. Adaptive Huber EEG feature learning model

Hui Zou proposed adaptive Lasso to solve the bias problem by adding adaptive weights to

L1 penalty term of the coefficients and gave the following criterion in 2006 [63].

Qadl(β) =

∥∥∥∥y− d∑
j=1

xjβj

∥∥∥∥2 +λ

d∑
j=1

ωadlj |βj |, (3.2)

where y is the response value, {xj}dj=1 is the sample, λ≥0 is a regularization parameter,

β={βj}j is the calculated regression coefficient, and ωadl is the weight vector of the regression

coefficients. ωadlj (j= 1,2,·· · ,d) are usually set the reciprocal of the least square coefficients. The

loss function in adaptive LASSO model is L2 norm function. Lacroix et al. [48] combined Huber

criterion with adaptive LASSO and proposed Huber adaptive LASSO (H-AD-LASSO) criterion

in 2011, as shown below:

QHadl(α,β,s) =LH(α,β,s)+λ

d∑
j=1

ωHadlj |βj |, (3.3)

and

LH(α,β,s) =



ns+

n∑
i=1

HM (
yi−α−xTi β

s
), if s>0,

2M

n∑
i=1

|yi−α−xTi β |, if s= 0,

+∞, if s<0,

(3.4)

where, HM (·) represents the Huber loss function, s is the data measurement scale, and α

represents the regression intercept from the data. ωHadl,β have the same meanings as ωadl,β in

criterion (3.2). In the H-AD-LASSO criterion, Huber loss function is combined with adaptive

LASSO, and the advantages of L2 loss and L1 loss are combined to make β sparse. Therefore,

the optimization model based on the H-AD-LASSO criterion has strong robustness. Although

the optimization model has several good properties, it is complex and hard to be applied in

applications. Based on this, we propose a feature learning model of EEG signals in this study,

called A-Huber. Our innovation is to improve the model proposed by Hussion [26], simplify

the model (3.3), and apply it to seizure detection. Experimental results show that Huber loss

function combined with adaptive weight method is effective in the analysis of epileptic EEG

signals. The flow chart of the experiment in this paper is presented in Figure 1, including

preprocessing of EEG signals, feature learning and epilepsy detection based on A-Huber model.

We will describe each part in detail in the following.
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Fig. 1 The flow chart of epilepsy recognition proposed in this study, which includes three

step: preprocessing of EEG signals, A-Huber model for feature learning, and epilepsy detection.

3.2.1. Preprocessing EEG signals are non-stationary and no-nlinear, and they fluctuate

greatly under the influence of time. ITD is a time-frequency analysis method commonly used

in the field of signal processing, and it is an effective tool for processing non-stationary and

nonlinear signals [14]. It considers linear operator and single-layer iteration, and can process

data in real time and analyze data effectively. In this study, we use ITD to decompose each

EEG signal into a set of proper rotation components (PRCs) in descending order of frequency.

The PRCs contain a large amount of pathological and physiological information of the original

EEG signals. Then, we calculate the mean, variance, skewness, and kurtosis of each PRC

instantaneous amplitude and frequency as the EEG features. These indexes are defined as

follows:

µ=
1

N

N−1∑
i=0

xi, δ2 =
1

N−1

N−1∑
i=0

(xi−µ)2,

s=
1

δ3

N−1∑
i=0

(xi−µ)3, k=
1

δ4

N−1∑
i=0

(xi−µ)4,

where xi corresponds to the value at the ith point of instantaneous frequency or instantaneous

amplitude of each PRC, and N is the length of each PRC. EEG signals contains different
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oscillation modes. Since the EEG signals are usually decomposed into five bandwidths based on

frequency range [52], we choose the first five PRCs for further feature learning. Figure 2 shows

an example, where an EEG signal is decomposed into five PRCs by ITD.

Fig. 2 The PRCs of an EEG signal decomposed by ITD.

3.2.2. A-Huber In this study, we propose the A-Huber feature learning model. The

A-Huber model is an unconstrained optimization problem which is defined as follows:

β̂(λ) = argmin
β
‖y−Xβ‖huber+λ

d∑
j=1

αj |βj |, (3.5)

where X ∈Rn×d and can be expressed as X=[x1;x2;.. .;xn]. Each xi is a sample which has

been preprocessed by ITD. n represents the number of EEG signals in X, and d represents

the dimension of xi. Since xi is a stack of four statistical indicators of the amplitudes and

frequencies of all five PRCs, d= 40. λ≥0 is the regularization parameter, and a sparse solution

can be obtained when the value of λ is large.

αj =
1

|β̂1
j |σ

is the weight of the jth regression coefficient, σ>0 is an adjustable parameter, we take σ= 1 in

this paper. β̂1
j is the solution of argminβ ‖y−Xβ‖22. The vector y is defined as the label vector



No. 3 YANG Li-jun et al: EEG Feature Learning Model Based· ·· 289

corresponding to X. We write X and y as:

X=


x1

x2
...

xn

=


x11 x12 ·· · x1d
x21 x22 ·· · x2d

...
...

. . .
...

xn1 xn2 ·· · xnd

 & y=


y1

y2
...

yn

. (3.6)

The optimization model (3.5) can be simplified as follows.

β̂(λ) = argmin
β
‖y−Xβ‖huber+λ

d∑
j=1

αj |βj |

= argmin
β
‖y−Xβ‖huber+λ

d∑
j=1

|αjβj |

= argmin
β∗
‖y−X∗β∗‖huber+λ‖β∗‖,

(3.7)

and

X∗=


α−11 x11 α

−1
2 x12 ·· · α−1d x1d

α−11 x21 α
−1
2 x22 ·· · α−1d x2d

...
...

. . .
...

α−11 xn1 α
−1
2 xn2 ·· · α−1d xnd

&β∗= (α1β1,α2β2, ·· · ,αdβd)T . (3.8)

Then the model (3.7) is equivalent to the following form:

β̂∗= argmin
β∗

H(y−X∗β∗)+λ‖β∗‖1, (3.9)

where H(·) is the Huber function, X∗∈Rn×d and y∈Rn×1. If the solution β̂∗ of the optimization

problem (3.9) is obtained, then the solution of (3.5) is β̂ := β̂∗/α.

Solution

The optimization problem (3.9) can be reformulated as the following constrained optimization

problem:

β̂∗= argmin
u,β

H(u)+λ‖β‖1,

s.t. u=y−X∗β.
(3.10)

Note that the Huber loss function is differentiable, while the L1 norm is not differentiable.

Therefore, this problem cannot be solved by the gradient descent method, Newton method and

so on. We can employ the methods such as proximal alternating direction multiplier method

(P-ADMM), proximal gradient methods [6] and block coordinate descent [36]. P-ADMM is an

improvement of ADMM which converges faster and has smaller errors. Therefore, P-ADMM is

used to solve problem (3.9) in this paper.

Consider the augmented lagrange function of (3.10):

LA(β,u,z) =λ‖β‖1 +H(u)−zT (X∗β+u−y)+
η

2
‖X∗β+u−y‖22. (3.11)
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where z∈Rn×1 is the lagrange multiplier, and η>0 is the penalty parameter.

(1) Firstly, fix variables u=uk,z=zk, solve the problem (3.11) about β, we have:

βk+1 = arg min
β∈Rd

λ‖β‖1−zTk (X∗β+uk−y)+
η

2
‖X∗β+uk−y‖22

= arg min
β∈Rd

λ‖β‖1−zTk (X∗β+uk−y)+
η

2
‖X∗β+uk−y‖22 +

1

2η
zTk zk

= arg min
β∈Rd

λ‖β‖1 +
η

2
‖X∗β+uk−y−

zk
η
‖22.

(3.12)

Since the analytic solution of (3.12) is hard to be obtained, we can compute the first-order

Taylor expansion of the second term at βk as an approximation. Suppose gk is the gradient of
1
2‖X

∗β+uk−y− zk
η ‖

2
2 at β=βk, i.e.,

gk =X∗T (X∗βk+uk−y−
zk
η

).

The formula (3.12) can be reformed in the following form:

βk+1 = arg min
β∈Rd

λ‖β‖1 +
η

2
‖X∗β+uk−y−

zk
η
‖22

≈arg min
β∈Rd

λ‖β‖1 +η(gTk (β−βk)+
1

2τ
‖β−βk‖22)

= arg min
β∈Rd

λ‖β‖1 +
η

2τ
(2τgTk (β−βk)+‖β−βk‖22 +τ2gTk gk)

= arg min
β∈Rd

λ‖β‖1 +
η

2τ
‖β−(βk−τgk)‖22

= Shrink(βk−τgk,
λτ

η
)

=max(|βk−τgk |−
λτ

η
,0)

βk−τgk
|βk−τgk |

.

(3.13)

where | · | and max represent the absolute value and maximum, respectively. We define 0 ·0/0 = 0.

(2) Secondly, fix variables β=βk+1, z=zk, minimize problem (3.11) about u, we can obtain

the following formula:

uk+1 = arg min
u∈Rn

H(u)−zTk (X∗βk+1 +u−y)+
η

2
‖X∗βk+1 +u−y‖22

= arg min
u∈Rn

H(u)+
η

2
‖X∗βk+1 +u−y− zk

η
‖22.

(3.14)

Variables in (3.14)can be separated and each element of u can be obtained as:

uik+1 = arg min
ui∈R

H(ui)+
η

2
(ui−(yi+

zik
η
−(X∗βk+1)i))2. (3.15)

To give a solution for (3.15), define an optimization operator as shown in Formula (3.16),

where α>0 is a constant.

Proxρ(ξ,α) = argmin
λ∈R

H(λ)+
1

2
α(λ−ξ)2. (3.16)

By simple calculation we can get the following formula.
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1.When |λ |≤ c, we have

argmin
λ∈R

H(λ)+
1

2
α(λ−ξ)2 = argmin

λ∈R
(
1

2
+

1

2
α)λ2−αξλ

Proxρ(ξ,α) =



−c, αξ

1+α
<−c,

αξ

1+α
, −c≤ αξ

1+α
≤ c,

c,
αξ

1+α
>c.

(3.17)

2.When λ>c, we have

argmin
λ∈R

H(λ)+
1

2
α(λ−ξ)2 = argmin

λ∈R
(
α

2
λ2 +cλ−αξλ)

Proxρ(ξ,α) =


αξ−c
α

,
αξ−c
α
≥ c,

c,
αξ−c
α

<c.

(3.18)

3.When λ<−c, we have

argmin
λ∈R

H(λ)+
1

2
α(λ−ξ)2 = argmin

λ∈R
(
α

2
λ2−cλ−αξλ)

Proxρ(ξ,α) =


αξ+c

α
,

αξ+c

α
≤−c,

−c, αξ−c
α

>−c.
(3.19)

Then, we can obtain the expression of the optimization operator Proxρ(ξ,α) explicitly

through equations (3.17), (3.18) and (3.19).

Proxρ(ξ,α) =



αξ+c

α
,

αξ+c

α
<−c,

αξ

1+α
, −c≤ αξ

1+α
≤ c,

αξ−c
α

,
αξ−c
α

>c.

(3.20)

Let

ξ=yi+
zik
η
−(Xβk)i, α=η, λ=ui,

and then we can get

uik+1 = Proxρ(ξ,α)

=Proxρ(y
i+

zik
η
−(X∗βk)i,η), iε[n]. (3.21)
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(3) Finally, fix variables u=uk+1, β=βk+1, update the lagrange multiplier zk+1

zk+1 =zk−γη(X∗βk+1 +uk+1−y). (3.22)

where γ>0 is a constant. Therefore, the P-ADMM algorithm for solving the problem of

Huber-L1 is as follows:

Table 3 Iterative process.

P-ADMM algorithm

Input: X; y; λ; η; τ ; max; ε= 1e−6;

Step 1. Initialization: Given initial value u=u0; z=z0; k= 0;

Step 2. While not converge, do

k≤max & ‖βk+1−βk‖2>ε;

βk+1←Shrink(βk−τgk, λτη );

uik+1←Proxρ(y
i+

zik
η −(X∗βk)i,η);

zk+1←zk−γη(X∗βk+1 +uk+1−y);

End while

Step 3: Output iteration result: βk.

3.3. EEG classification

After obtaining the EEG features learned from the A-Hubr model, RF, SVM, and FNN can

be used as classifiers for detection tasks. In subsection 4.1, the A-Hubr model is combined with

three classifiers to detect epilepsy, and we found that FNN the best performance among the

three classifiers (please refer to Table 4 for detailed experimental results). As consequence, we

choose FNN as the classifier and compare the experimental results with the published studies in

other experiments.

§4. Experimental studies

In this section, three kinds of experiments will be conducted to test the performance of the

A-Huber model. The representation ability of the A-Huber model is tested through different

classifiers. Moreover, we also compare the proposed method with other methods in the literature.

In the experiments, we use the well-known performance metrics: sensitivity (Sen), specificity

(Spe), and accuracy (Acc) [2, 26,43], which are defined as follows:

Sen=
TP

FN+TP
×100%, (4.1)

Spe=
TN

TN+FP
×100%, (4.2)
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Acc=
TP +TN

FN+TP +TN+FP
×100%, (4.3)

where TP represents the number of true positive samples whose predicted results by the classifier

are also true positive. Similarly, TN, FP and FN represent the number of true negative, false

positive and false negative samples, respectively. Besides, the ten fold cross validation technique

is used in the experiments [54]. We randomly divide the initial sample dataset D into 10 disjoint

subsets, i.e.,

D=D1∪D2∪···∪D10,Di∩Dj =∅(i 6= j),

where ∅ is an empty set. Then the model is trained by 9 subsets and tested by the remaining

one subset. As a result, we obtain 10 classification results, whose average will be employed to

evaluate the performance.

4.1. Experiment 1: Performance test of the feature representation

To test the feature representation performance of the A-Huber model, we combine the

A-Huber features with three classifiers (RF, SVM, and FNN), and perform the two-classification

task of epileptic EEG signals. The sensitivities, specificities, and accuracies of the experimental

results are shown in Table 4. It can be seen from the experimental results that all accuracies are

higher than 80%, which shows that the A-Huber model can effectively learn the discriminant

features for epilepsy detection. In addition, we also find that the FNN classifier has the highest

accuracy among the listing classifiers. Therefore, we will only use the combination of the

proposed model and FNN to compare with the methods in the literature.

Table 4 Classification results with different classifier(Sen-Spe-Acc)(%).

Problems SVM RF FNN

A vs E 100-98-99 99-98-98.5 100-100-100

C vs E 95-99-97 96-97-96.5 99-99-99

B vs E 94-100-97 98-98-88 99-100-99.5

D vs E 88-90-89 91-85-88 98.5-99.0-98.0

CHB-MIT 1 98.81-99.76-99.29 98.33-99.76-99.05 100-100-100

Ictal vs Interictal 97 -94 -100 96-97-96.5 100-100-100

Preictal vs Ictal 96 - 98- 97 98-96-97 98-99-98.5

Interictal vs Preictal 84- 90- 82 84- 90-85 86-94-90

4.2. Experiment 2: Comparison with the state-of-the-art methods

In this section, we compare the proposed epilepsy detection methods with the state-of-the-art

methods on three public datasets.



294 CHINESE QUARTERLY JOURNAL OF MATHEMATICS Vol. 37

In the Bonn dataset, we perform four experiments, which are A vs E, B vs E, C vs E and D

vs E. Table 5 shows the comparison results with different methods. According to the results, we

can see that the proposed A-Huber model can learn the discriminative features and has better

classification performance.

Table 5 Comparison of Bonn two classification results.

Classes Method Classifier Sen (%) Spe (%) Acc (%)

AvsE Kumar2014Machine [30] SVM 98.00 96.00 97.5

Admin2016A [3] RUSBoost - - 97.87

Diykh2017Classify [12] SVM - - 100

Raghu2019A [39] MLP - - 99.45

Hussein2019Robust [26] RF 100 99.0 99.50

Sameer2020Wireless [42] RF - - 98

A-Huber FNN 100 100 100

BvsE Supriya2016Weighted [41] SVM - - 97.25

Diykh2017Classify [12] SVM - - 99.76

Peng2019novel [37] DLWH 100 95 97.50

Raghu2019A [39] MLP - - 96.06

Sameer2020Wireless [42] RF - - 96

A-Huber FNN 99.00 100.00 99.50

CvsE Samiee2014Rational [41] MLP 98.5 99.3 97.7

Diykh2017Classify [12] SVM - - 96

Raghu2019A [39] MLP - - 97.60

Peng2019Tnovel [37] DLWH 99 98 100

A-Huber FNN 99.00 99.00 99.00

DvsE Samiee2014Rational [41] MLP 94 100 88

Diykh2017Classify [12] SVM - - 93.7

Raghu2019A [39] MLP - - 97.60

Sameer2020Wireless [42] Adaboost - - 95.5

A-Huber FNN 98.50 99.00 98.00

For CHB-MIT dataset, the data amount of two classes are highly unbalanced since there has

significant difference in the length of EEG signals recorded in epileptic period and non-epileptic

period. Hence, the continuous EEG signals are cut into some segments with the length of 256

sampling points, and some non-epileptic data samples are discarded so that the epileptic sample

size is the same as the size of non-epileptic samples. The experimental results presented in

Table 6 show that the average accuracy, sensitivity, and specificity of the proposed method are

99.05%, 99.11%, and 98.97%, respectively. Compared with the state-of-the-art methods, the
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proposed methods has better performance.

Table 6 Comparison of CHB-MIT two classification results.

Method Number of subjects Classifier Acc (%) Sen (%) Spe (%)

Ahammad2014Detection [35] 24 Linear classifier 84.2 - 98.5

Gill2015Analysis [15] 12 GMM 86.93 86.26 87.58

Khan et al2017 [29] / WT and CNN / 87.8 /

Chen et al2017 [11] 18 DWT / 91.71 92.89

Truong et al2018 [53] 13 STFT and CNN / 81.2 /

Peng2019A [37] 24 DLWH 95.06 94.33 95.06

Zhang2021EEG [60] 23 STFT+CNN 98.46 - -

A-Huber 24 FNN 99.05 99.11 98.97

Experimental results show that the proposed model can further improve recognition perfor-

mance and obtain the best the accuracy, sensitivity and specificity, and the comparison results

are shown in Table 7.

Table 7 Comparison of New Delhi Epilepsy Dataset two classification results.

Classes Method Classifier Acc (%) Sen (%) Spe (%)

Ictal vs Interictal Sameer2020Wireless [42] SVM 98 - -

P.Swami2019Selection [49] ENE,STD 98.12 97.49 98.74

A-Huber FNN 100 100 100

Preictal vs Ictal Sameer2020Wireless [42] SVM 97 - -

A-Huber FNN 98.5 98 99

Interictal vs Preictal Sameer2020Wireless [42] SVM 71 - -

A-Huber FNN 90 86 94

4.3. Experiment 3: Comparison with other optimization models

The comparison methods listed in Table 8 are feature learning methods for epilepsy detection,

which are all considered from the perspective of optimization model. Yuan et al. [59] proposed

the kernel sparse representation classification (KSRC) model, which was an improvement on

the traditional SRC model. They performed two-class experiments (AvsE and DvsE) on Bonn

dataset to test the validity of their model. The accuracy is 98.63% by using Gaussian kernel.

Peng et al. [37] combined dictionary learning with sparse representation (DLSR) for epilepsy

detection. They also considered the two-class classification and the accuracies were varying
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from 97.5% to 100%. Hussein et al. [26] extracted EEG features by using L1-penalized robust

regression and classified by using the RF classifier. On the two-class problem AvsE, they reached

the accuracy of 99.50% with 10-fold cross-validation method. Compared with these optimization

models, the A-Huber shows better performance, which obtains the accuracies varying from 98%

to 100% in two-class problems.

Table 8 Comparison the A-Huber model with other optimization models (Acc)(%).

Optimization model AvsE BvsE CvsE DvsE CHB-MIT

KSRC [59] 98.63 - - 98.63 -

L1PR [26] 99.5 - - - -

DLSR [37] 100 97.5 99 99.5 -

A-Huber 100 99.5 99 98 99.05

§5. Discussion

Experimental results illustrate that the A-Huber model can perform well in EEG-based

epilepsy detection. By using A-Huber model to learn an adaptive weight for feature learning,

we find that this model has good classification results and can learn discriminant features for

detecting epilepsy. The effectiveness of A-Huber model is verified by comparing with recent

published recognition results in different EEG datasets.

The A-Huber model is similar to previous studies by using some optimization models to

learn the features of epilepsy. Adaptive weight plays a key role in model structure. Hussein

et al. [26] selected features from the perspective of sparsity, while the proposed model in this

study further considered the advantages of L1 loss function and L2 loss function. Therefore, the

A-Huber model proposed in this paper can make full use of the structural information of EEG

signals, which combines the advantages of adaptive weight and Huber loss function.

§6. Conclusion and future work

A feature learning model (A-Huber) for seizure detection is proposed in this paper, which

is based on adaptive weight and Huber loss function. The A-Huber model learns an adaptive

weight by using ITD preprocessed EEG signals, so as to carry out feature selection of EEG

signals. In addition, the proposed model can be solved by the P-ADMM algorithm, which

effectively ensures the convergence. The model extracts discriminant features from EEG signals

and performs well when using different classifiers.

The limitation of this method is that, although P-ADMM algorithm can ensure convergence

and high operation efficiency, it has many adjustable parameters, and the fluctuation of param-

eters has a great impact on the model solution. Therefore, other methods can be considered to
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optimize the algorithm or further optimize the model. In addition, this paper mainly carries out

the classification experiments of two classes, and multi-classification experiments can be studied

in the future.
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