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Abstract: In this paper, we propose a semi-continuous dynamical system to study the
cooperative system with feedback control. Based on geometrical analysis and the analogue
of Poincaré criterion, the existence and stability of the positive order one periodic solutions
are given. Numerical results are carried out to illustrate the feasibility of our main results.
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8§1. Introduction

As one of the three important ecological systems, cooperative system has attracted lots of
researchers’ attention. However, compared with predator-prey system and competitive system,
still less work has been done. Cooperative interactions are reciprocally beneficial relationships
between organisms. In virtue of their widespread occurrence in ecological system and human
society, a large number of ODE and DDE models have been proposed to study itl'"#. B S Goh

in®! gave a simple test for global stability in a large class of nonlinear models of mutualism. X Z
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He and K Gopalsamy studied the persistence, attractively and delay in Facultative Mutualism

inl. Time delays in cooperative system were also discussed("9).

With the development of the impulsive differential equation theory in recent decades, its
application in population dynamics is also becoming common. A lot of discontinuous, impulsive
phenomena in the natural ecological systems are studied by constructing impulsive differential
equation models. One of such phenomena getting increasingly attention is human intervention
in the optimal management of renewable resources(for example, exploitation of biological re-

Y0171 A typical

sources and the harvest of species in fishery, forestry and wildlife management
characteristic of this kind of intervention is that the behavior of harvest is relatively instan-
taneous, so impulsive dynamical systems can describe it much better. However, such research
on species with cooperative interaction is rarely seen in the literature. Z Yaol'8! studied a
cooperative system with impulsive harvest, but the harvest was operated on fixed time without
knowing the biomass of the species. A highly possible risk of this kind of harvest is excessive
exploitation, even resource exhaustion. To improve the harvesting styles, we introduce a reliable
real time monitoring system to estimate the biomass of the species. Only when the biomass of
the species according to the monitoring system reaches a certain level, the behavior of harvest
can be carried out, otherwise, no harvest is permitted. Motivated by the above facts, in this
paper, we investigate the cooperative system with state feedback impulsive control of renewable

resource.

Let z(t) and y(t) denote population densities of the two cooperative species at time t,
respectively. Suppose both populations grow logistically with carrying capacities given by r1/a
and ro/d, intrinsic growth rates governed by r1 and r5 and the two species interaction coefficient
governed by b and c¢. The impulsive harvest is modeled by the following semi-continuous system

dfi(tt) x(t)(r1 — az(t) + by(t)),

y < h,

dléigt) = y(t)(ro + cz(t) — dy(t)),

(1.1)
Aalt) =0, Ay(t)=—By(t),} v=h.

z(0) = zo, ¥(0) = o,

where xg > 0 and yg > 0 denote initial densities of the two cooperative species, respectively. h is
an adjustable constant threshold value for the density of the second species-when the population
density y reaches the threshold value, the impulsive harvest of this species with proportion p
is performed. Throughout this paper we assume that the initial density of the y-population is
always less than h. Otherwise, the initial values are taken after an impulsive application.

The paper is organized as follows. In Section 2, some notations and preliminary results are
provided. In Section 3, we mainly discuss the existence and orbitally stability of the periodic
solution of system (1.1). The paper ends with some numerical simulations and a brief discussion.
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§2. Preliminaries

Without impulsive effect, system (1.1) can be written as

da(t) = z(t)(r1 — ax(t) + by(t)),
dd(tt) (2.1)
%T = y(t)(re + cx(t) — dy(t)).

For system (2.1), there are always three boundary equilibria: an unstable node O(0,0) and two
saddle points A(ri/a,0) and B(0,r2/d). If ad — bc > 0, there is another interior node (z*,y*)
rid+rab %

that is globally stable in the first quadrant, where x* = =722 ¢* = %.

Throughout this paper, we assume h < % when ad—bc > 0. In practice, if h > “;37:?;1,

the population level of y will not be in a high state because it will tend to % eventually

without human intervention.

To discuss the dynamics of system (1.1), we firstly denote two cross-sections in the vector
field of system (1.1) by

P I

ZZ{(x,y)\x>0,y=(1—p)h}, Zz{(x,y)|x>0,y:h}

In the following, we construct a Poincaré map in the way!'® and give the definition of
periodic solutions.

Suppose that the trajectory of system (1.1) starts from the point P,(z,,(1 — p)h) on
S°F firstly intersects 327 at point P/ (z/,,h), after impulsive effect it jumps to S°F at point
Poi1(zpt1, (1 — p)h). Then the associated Poincaré map defined on ZP is given by

P P
F:3 =3 (@ (1 =p)h) = (@ar1, (1 —p)h).

Let (x(t), y(t)) be a solution of system (1.1) which starts from point Py(zo, (1 — p)h) on
ZP. The trajectory with the initial condition Py firstly intersects the cross-section X! at point
Pj(x(,h), then jumps to the point Pj(z1,(1 — p)h) on the cross-section ZP. Repeating the
above process, we can get the impulsive sequence: {Py(xg, (1 —p)h)}(k € N).

Definition 2.1[201 A solution (z(t),y(t)) of system (1.1) through the point (zg, (1 — p)h)
at t = 0 is said to be order n periodic if zy = z,,.

Remark 1 If F(zg, (1 —p)h) = (zo, (1 —p)h), (zo, (1 —p)h) € 3°F, then system (1.1) has
an order one periodic solution passing through point (zg, (1 — p)h).

Remark 2  The Poincaré map F(x,(1 — p)h) is continuous in z.

For the stability of the order n periodic solution, consider the following autonomous system
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with impulsive effects

d d
T=Pay), G =Qy). ey £0, o)

Ax:a(x,y), Ay:ﬂ(xvy)a (p(l‘,y) # 0,

where P(x,y) and Q(z,y) are continuous differential functions and ¢(z,y) is a sufficiently
smooth function with V(z,y) # 0. Let (£(¢),n(t)) be a positive T-periodic solution of system
(2.2). By results in Simeonov and Bainov[?!l, we have the following Lemma.

Lemma 2.1(Analogue of Poincaré Criterion) If the Floquet multiplier p satisfies

the condition pu < 1, where

p=TT e ([ (57 (€00 + S (60, n)a)

k=1 0

with
p(%@e_%@e QSQH_Q( o Op _ da 0p @Q)
+(9y 0= ~ 9z Oy a +(9z 9y oy ar T Iy

Ak: )
Pog +Qg

where P, Q, ‘g%;, g—z, g—f, %, g—f and a—‘” are calculated at the point (&(7x),n(7%)), Py =

P(E(T), 1(m))s Q4 = Q(&(m)), (7)) and 7y, is the time of the kth jump. Then, (£(t),7(t))
is orbitally asymptotically stable.

§3. Existence and Stability of Periodic Solutions

In this section, we mainly discuss the existence and stability of the order one periodic

solution of the system (1.1) by geometrical analysis and the analogue of Poincaré criterion.

To illustrate the existence of the positive periodic solution, we will turn to the geometrical

construction of the phase space of system (1.1).

Theorem 3.1 Assume that ad — be < 0(or ad — be > 0,h < %2013 then system (1.1)
has a positive order one periodic solution.

Proof Suppose that the isocline r; —az+by = 0 intersects the horizontal lines y = (1—p)h
and y = h at points C(z¢, (1 — p)h) and D(xp, h), respectively. Points E(zg, (1 — p)h) and
F(zp, (1 —p)h) are on the cross-section X' where rx = zp and point F is on the right and

next to the point C(see Fig. 1).

Because r; — ax + by = 0 is the vertical isocline, variable x increases above this vertical
isocline in the vector field and decreases in the lower half of the vector field. Consider the

following two special trajectories of system (1.1).

(1) The trajectory starting from point E must intersect the cross-section X at a point
EI(IE/,h), where < xp. The point E is mapped to the cross-section ¥ at point

E1(zg,, (1 —p)h) after impulsive effect, where vp, < g = xp(because zg, = xp/).
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Fig. 1 Existence of order one periodic solution of system (1.1) when ad — bc < 0 and when
ad —bc > 0 and h < 222%erL,

(') The trajectory starting from point F' must intersect the cross-section X at a point

F' (xpr, h), where zp < xp(because distinct trajectories do not intersect and point F' is next

to point C). The point F is mapped to the cross-section %7 at point Fy(zp,, (1 — p)h) after

impulsive effect, where zp < zp, < g, .

For the points E and F on the cross-section ¥, we have a conclusion about the Poincaré
map F(F) = E,,F(F) = Fy. That is to say

F(ep, (1 =p)h) = (zg,, (L = p)h), Fzr,(1 = p)h) = (zr, (1 - p)h).

The Poincaré map F(z, (1 —p)h) is continuous in z, so there must exist a point N between
the points E and F such that F(N) = N due to zg, < zg and zp, > zp. According to
Definition 2.1, the system (1.1) has an order one periodic solution that passes through point
N.

Theorem 3.2 If ad—be < 0(or ad—be > 0,h < 2200 py — 7y —2(b+d)(1—p)h+bh+
w < 0and ry + %Jﬂ)h) — 2dh > 0, then the order one periodic solution is orbitally
asymptotically stable.

Proof Suppose the intersection of the order one periodic solution and the cross-section £

is N(zp, (1—p)h) and the period of the periodic solution is T', then we have z¢ = ntb—ph

zn < xp = B Denote this periodic solution by (£(t),n(t)), we can easily get (£(T),n(T)) =
(LUN, h) and <£(T+)7 W(T+>) = (xN7 (1 - p)h>

According to Lemma 2.1, we have P(x,y) = z(r1 — ax + by),Q(z,y) = y(rs + cx —
dy), o(z,y) =y — h,a(x,y) =0 and G(z,y) = —py. An easy calculation shows that

a—P:rl—2ax—|—by, @:r2+cx—2dy,
Ox oy
8&_8@_%_%_0 B %_1

dx oy Oxr ox 8y__p’8y_
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Obviously, the periodic solution satisfies z¢ = M <&t) < zp = %, (1—-ph <
n(t) < h, so we have

| Gt + G0 no)r

T
= /0 (r1 + 1o — 2a€(t) + c£(t) + bn(t) — 2dn(t))dt

1—
ntbl-ph  n th bk — 2d(1 — p)h)dt

T
§/ (r1+r—2a
0 a

(T’1 -+ bh)
a

- /T(r2 — 11— 2(b+d)(1 — p)h + bl + & )dt. (3.1)
0

Ifro—r; —2(b+d)(1 —p)h +bh+ w < 0 holds, we can easily obtain

T op 0
exp [ (GrE®m(0) + FAEO )] < 1. (32

Consider the function f(y) = y(re+cxy—dy) on [(1—p)h, h]. Obviously, for (1-p)h <y < h,
we have f(y) > 0 and

clri+b(1—p)h] 2dh.
a

f'(y)=ro+ceny —2dy > ro +

If 7y + 02D 94 > 0, then f/(y) > 0 for (1—p)h <y < hand 0 < f((1—p)h) < f(h).
According to Lemma 2.1, if 7o + M —2dh > 0, we get

(I =p)h(ro+cay —d(1 —p)h)  f((1—p)h)
0<Ak= Ii(ra + czn —dh) =" m o <t

To sum up, ifrg—rl—2(b+d)(1—p)h+bh+w < 0 and T2+M_2dh>0,

then
n=Scexp | [ (GEE00(0) + FHEDnO)0)] < 1.

Due to Lemma 2.1, the positive periodic solution is orbitally asymptotically stable and has the

asymptotic phase property. That completes the proof.

84. Numerical Simulations and Discussions

In this section, we shall use numerical simulations to illustrate the feasibility of our main
results. In Fig. 2 and Fig. 3, welet ry =1, 1o =1, a=0.5, b=0.5, c=0.1, d=0.1, p=10.3
and h = 1. Then ad — bc = 0, and we can see that without impulsive effect, the system (2.1)
does not has a positive equilibrium and the densities of the two species quickly grow up (see Fig.
2). By simple calculation, we obtain ro —r; —2(b+d)(1 —p)h +bh + w = —0.04 <0 and
ro+ M —2dh = 3.5 > 0. According to Theorem 3.2, the system (1.1) has an order one
periodic solution that is orbitally asymptotically stable. Fig. 3 reveals that the state-dependent
impulsive harvests of the second species maintain the system at a sustained oscillatory state.

It also exhibits the orbital stability of the order one periodic solution.
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Fig. 2 The time series and the fortrait phase of the system (2.1) when ad — bc < 0 with initial
values (2,0.8).
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Fig. 3 Existence and orbitally asymptotically stable of the order one periodic solutions of the

system (1.1) with different initial values (2,0.8),(2.5,0.8) and (2.8,0.5) when ad — bc < 0.
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Fig. 4 The time series and the portrait phase of the system (2.1) when ad — bc > 0 with initial

values (8,3).
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Fig. 5 Existence and orbitally asymptotically stable of the order one periodic solutions of the

system (1.1) with different initial values (6,2), (8,3) and (12,4) when ad — bc > 0.

In Fig. 4 and Fig. 5, welet 11 =5, ro =1, a=0.5, b=0.2, c=0.1, d=0.1, p=0.5 and
h =6. Then ad — bc = 0.03 > 0 and % = 33.3 > h, and we can see that without impulsive
effect, the system (2.1) does has a positive equilibrium and the densities of the two species
tends to a high level(see Fig. 4). By simple calculation, we obtain 1o —r1 — 2(b+d)(1 —p)h +
bh + SR — 336 < 0 and 1y + LR 9gp — .92 > 0. According to Theorem 3.2,
the system (1.1) also has an order one periodic solution that is orbitally asymptotically stable.
From Fig. 5, we can see that, controlled by a predefined threshold value h, both densities
of the two cooperative species are controlled in a relatively low level and the state-dependent

impulsive harvests also maintain the system at a sustained stable oscillatory state.

We build a cooperative system with state feedback impulsive harvest in this paper. We
assume the second species is a renewable resource that has high commercial value. To avoid
over-exploitation of it, we introduce a real time monitoring system for the species’ density,
harvest can be carried out only when the species density reaches a adjustable predefined value.
theorems 3.1 and 3.2 ensure that the cooperative system has a positive periodic solution under
this state feedback control and the periodic solution is orbitally asymptotically stable provided
some conditions are satisfied.

The existence and stability of the order one periodic solution ensure that the perturbation
by the harvest in such an automated way can keep the species density under control. This
illustrates that under reasonable control of the impulsive harvest yield, people can achieve

economic benefits effectively and avoid excessive exploitation at the same time.
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