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§1. Introduction

The Hochschild homology and cohomology theory played a fundamental role in representation

theory of artin algebras. Hochschild homology is closely related to the voriented cycle and the

global dimension of algebras; Hochschild cohomology is closely related to simple connectedness,

separability and deformation theory.

The monomial algebras is a class of relatively simple algebras. The Hochschild homology

and cohomology of this kind of algebras have been widely studied. The cup product on the

Hochschild cohomology has been described for some especial monomial algebras such as radical

square zero algebras [3], exterior algebras [14], truncated quiver algebras [1,7] and so on. For the

Lie structure on the Hochschild cohomology, Xu and Zhang have described the Gerstenhaber

bracket on the Hochschild cohomology of truncated quiver algebras in terms of parallel paths [15].

The Gerstenhaber bracket on the Hochschild cohomology of triangular quadratic monomial

algebras are considered in [2]. However, for most finite dimensional algebras, it is little to

known about the the Gerstenhaber bracket of the Hochschild cohomology. Here we will give the

description of the Gerstenhaber bracket on Hochschild cohomology of the self-injective quadratic

monomial algebras clearly.
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During several decades, a new structure in Hochschild theory has been extensively studied in

topology and mathematical physics, and recently this was introduced into algebra, the so-called

Batalin-Vilkovisky structure. Roughly speaking a Batalin-Vilkovisky structure is an operator

on a Gerstenhaber algebra which squares to zero, and which together with the cup product,

can express the Gerstenhaber bracket. A Batalin-Vilkovisky algebra structure exists only on

Hochschild cohomology of certain special classes of algebras. Tradler found that the Hochschild

cohomology of a finite-dimensional self-injective algebra is a Batalin-Vilkovisky algebra [11]. In

2016, Lambre et al. and Volkov independently showed that this result is also valid for Frobenius

algebras with semisimple Nakayama automorphisms [8,13]. But it is very difficult to give the

Batalin-Vilkovisky algebra structure on the Hochschild cohomology of an algebra in general.

Here for the self-injective quadratic monomial algebras, we can give a complete description of

the Batalin-Vilkovisky algebra structure on the Hochschild cohomology of this kind of algebras.

The paper is structured as follows. In Section 2, we review the definitions of Hochschild

cohomology, cup product, Gerstenhaber bracket product and Batalin-Vilkovisky algebra. In

Section 3, we first show that the self-injective quadratic monomial algebras are essentially the

radical square zero Nakayama algebras of type Ã. We denote this class of algebras by An

and recall the minimal projective bimodule resolution of An which has given by Bardezll. We

also give a basis of each degree of Hochschild cohomology of An by using this resolution. In

Section 4, we give the ring structure on HH∗(An)=
⊕

m≥0HH
m(An). In particular, we show

that the Hochschild cohomology ring modulo the nilpotent ideal is finite generated, and so

give a positive answer to the Snashall-Solberg conjecture. In Section 5, by the chain mappings

between the reduced bar resolution and the minimal projective bimodule resolution of An,

we give the Gerstenhaber algebra structure and the Batalin-Vilkovisky algebra structure on

HH∗(An) clearly. Throughout this paper, we fix k an algebraically closed field with chark= 0,

⊗ :=⊗k.

§2. Hochschild cohomology of associative algebras

The cohomology theory of associative algebras was introduced by Hochschild (see [6]). Let

Λ be an associative algebra over a field k. The Hochschild cohomology HH∗(Λ) of Λ has a

very rich structure. In this section, we recall the cup product, the Gerstenhaber bracket and

Batalin-Vilkovisky algebra structure in the Hochschild cohomology.

For an associative k-algebra Λ, there is a projective bimodule resolution of Λ as following:

B= (Bm,dm) : ·· · // Λ⊗(m+2) dm // Λ⊗(m+1) // ·· · // Λ⊗3 d1 // Λ⊗2 d0 // Λ // 0,

where d0 is the multiplication map, Bm=A⊗(m+2) for m≥0, and dm is defined by

dm(a0⊗a1⊗···⊗am+1) =

m∑
i=0

(−1)ia0⊗···⊗ai−1⊗aiai+1⊗ai+2⊗···⊗am+1,

for all a0,a1, ·· · ,am+1∈Λ. This resolution is called the bar resolution of Λ.
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Let {e1,e2, ·· · ,el} be a complete set of primitive orthogonal idempotents of Λ, E the

subalgebra of Λ generated by {e1,e2, ·· · ,el}. Denote Λ̄=Λ/E, the quotient k-module, and

B̄m=Λ⊗E Λ̄⊗Em⊗EΛ. Then the quotients B̄m constitute a complex B̄=(B̄m, d̄m), where the

differential d̄m induced from dm, for all m≥0. The complex B̄ is also a projective bimodule

resolution of Λ, and is called the reduced bar resolution of Λ.

Applying the functor HomΛe(−,Λ) to the complex B (or B̄), we get a complex HomΛe(B,Λ).

Note that for each m≥0, HomΛe(Bm,Λ)∼=Homk(Λ⊗m,Λ), the Hochschild cohomology of Λ is

just the homology of complex C= (Cm, δm), where Cm= Homk(Λ⊗m,Λ) and

δm(f)(a1⊗···⊗am+1) =a1f(a2⊗···⊗am+1)

+

m∑
i=1

(−1)if(a1⊗···⊗ai−1⊗aiai+1⊗ai+2⊗···⊗am+1)

+(−1)m+1f(a1⊗···⊗am)am+1,

for any f ∈Homk(Λ⊗m,Λ), and a1⊗···⊗am+1∈Λ⊗(m+1).

The cup product αtβ∈Cm+l(Λ) = Homk(Λ⊗(m+l),Λ) for α∈Cm(Λ) and β∈Cl(Λ) is given

by

(αtβ)(a1⊗···⊗am+l) =α(a1⊗···⊗am)β(am+1⊗···⊗am+l).

This cup product induces a well-defined product in Hochschild cohomology

t : HHm(Λ)×HH l(Λ)−→HHm+l(Λ),

which turns the graded k-vector space HH∗(Λ)=
⊕

i≥0HH
i(Λ) into a graded commutative

algebra, for the details see [6].

Besides addition and multiplication, there is another binary operation on HH∗(Λ), which is

called Gerstenhaber bracket. Let α∈Cm(Λ) and β∈Cl(Λ). If m,l≥1, then for 1≤ i≤m, define

α◦̂iβ∈Cn+m−1(Λ) by

(α◦̂iβ)(a1⊗···⊗am+l−1) =α(a1⊗···⊗ai−1⊗β(ai⊗···⊗ai+l−1)⊗ai+l⊗···⊗am+l−1),

if m≥1 and l= 0, then β∈Λ and for 1≤ i≤m, define

(α◦̂iβ)(a1⊗···⊗am−1) =α(a1⊗···⊗ai−1⊗β⊗ai⊗···⊗am−1),

for any other case, α◦̂iβ= 0. Now we can define the Gerstenhaber bracket. Let

α◦̂β=

m∑
i=1

(−1)(l−1)(i−1)α◦̂iβ,

and [α, β] =α◦̂β−(−1)(m−1)(l−1)β◦̂α. The above [ , ] induces a well-defined graded Lie bracket

in Hochschild cohomology

[ , ] : HHm(Λ)×HH l(Λ)−→HHm+l−1(Λ).
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This graded Lie bracket is usually called the Gerstenhaber bracket in HH∗+1(Λ). It is well-known

that (HH∗(Λ), t, [ , ]) is a Gerstenhaber algebra (see [5]). That is, the following conditions

hold:

(1) (HH∗(Λ), t) is an associative algebra.

(2) (HH∗+1(Λ), [ , ]) is a graded Lie algebra with bracket [ , ] of degree −1.

(3) [f tg, h] = [f, h]tg+(−1)|f |(|h|−1)f t [g, h], where |f | denotes the degree of f .

If there is an operator on Hochschild cohomology which squares to zero and together with

the cup product can express the Lie bracket, then it is an Batalin-Vilkovisky algebra. Let us

review the definition of Batalin-Vilkovisky algebra (see, for example [12]).

Definition 2.1. A Batalin-Vilkovisky algebra is a Gerstenhaber algebra (Λ•, t, [ , ]) together

with an operator ∆ : Λ•→Λ•−1 of degree −1 such that ∆◦∆ = 0 and

[a, b] =−(−1)(|a|−1)|b|
(

∆(atb)−∆(a)tb−(−1)|a|at∆(b)
)
,

for homogeneous elements a,b∈Λ•.

For any associative k-algebra with unity, the author proved that (HH∗(Λ), t, [ , ]) is always

a Gerstenhaber algebra in [5]. However, for a given algebra, it is very difficult to obtain this

structure concretely, that is, to describe exactly the cup product and Gerstenhaber bracket

product, is very difficult. The Batalin-Vilkovisky operator ∆ does not always exist for the

Hochschild cohomology ring HH∗(Λ) of an algebra Λ. So far, we only know that there is a

Batalin-Vilkovisky operator on Hochschild cohomology ring for few kinds of algebras.

§3. Hochschild cohomology groups

In this section, we consider the Hochschild cohomology groups of the self-injective quadratic

monomial algebras. Recently, Lu and Zhu have given a detailed description of self-injective

quadratic monomial algebras in [9]. They have shown that a basic k-algebra Λ over an

algebraically closed field k is self-injective if and only if Λ is self-injective Nakayama k-algebra

(see Remark 4.3.7 in [9]). Thus by studying the self-injective quadratic monomial algebras, we

only need to consider the algebras An, which are given by quiver Q as following:

rr r
r r

1

2n

n−1 3

-
j

�

?

αn α1

α2αn−1

with relations αiαi+1 =0, i=1,2,·· · ,n, where αn+1 =α1. This is, An=kQ/I, where I is an

ideal of path algebra kQ generated by αiαi+1 =0, i=1,2, ·· · ,n. We denote by ei the trivial
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path in Q and the idempotent element in kQ corresponding to vertex i, i=1,2, ·· · ,n. Then

B :={ei, αi |1≤ i≤n} is a k-basis of An, and so that dimkAn= 2n.

The algebras An are truncated quiver algebras. Bardezll and his collaborators have given

the Hochschild cohomology groups for truncated quiver algebras in [4]. In this section we will

use the parallel paths to give these conclusions again. Firstly, we consider the minimal projective

bimodule resolution of An. Setting

F 0 :=
{
f0
i =ei

}
, Fm :={fmi =αiαi+1 ·· ·αi+m−1 |1≤ i≤n},

for all m≥1. We denote by o(p) and t(p) the originals and terminus of p, for any path p∈kQ.

Let

Pm :=
⊕
f∈Fm

Ano(f)⊗ t(f)An,

for m≥0, and dm :Pm→Pm−1

dm (o(fmi )⊗ t(fmi )) =αi⊗ t(fm−1
i+1 )+(−1)mo(fm−1

i )⊗αi+m−1,

for m≥1. Then we get a minimal projective bimodule resolution of An:

P : ·· · // Pm+1

dm+1 // Pm // ·· · // P2
d2 // P1

d1 // P0
d0 // An // 0,

where d0 is the multiplication map. For the details see [7]. Applying the functor HomAe
n
(−,An),

we get a complex HomAe
n
(P,An). The Hochschild cohomology group of An is just the homology

group of the complex HomAe
n
(P,An). Now we give an equivalent characterization of the complex

HomAe
n
(P,An).

Let X and Y be the sets of paths in kQ. We define

X//Y :={(p,q)∈X×Y |o(p) =o(q) and t(p) = t(q)} ,

and denote by k{X//Y } the vector space spanned by the elements in X//Y , and call (p,q)∈
kQ//kQ a parallel path. Consider the sets B//Fm, we get

B//Fm=


{(αi,fmi ) |1≤ i≤n}, if m=kn+1,k∈Z;

{(ei,fmi ) |1≤ i≤n} , if m=kn,k∈Z;

0, otherwise.

Define complex L= (Lm,σm), where Lm=k(B//Fm) if m≥0 and for any m≥1, σm :Lm−1→Lm

is given by

σm(b,fm−1
i ) = (αi−1b, f

m
i−1)+(−1)m(bαi+m−1, f

m
i ).

Then we have the following lemma.

Lemma 3.1. HomAe
n
(P,An)∼=L as complexes.
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Proof. We have isomorphisms

HomAe
n

(Pm,An)∼=
⊕
f∈Fm

HomAe
n

(Ano(f)⊗ t(f)An,An)

∼=
⊕
f∈Fm

o(f)Ant(f)∼=Lm

as k-vector spaces. The corresponding isomorphism ϕm :Lm→HomAe
n

(Pm,An) is given by

(a,f) 7→ ξ(a,f), where ξ(a,f) (o(g)⊗ t(g)) is a if f =g and is 0 otherwise. Then the diagram

·· · // k(B//Fm)
σm+1

//

ϕm

��

k
(
B//Fm+1

)
//

ϕm+1

��

·· ·

·· · // HomAe
n

(Pm,An)
d∗n+1 // HomAe

n
(Pm+1,An) // ·· ·

is commutative. Therefore, the isomorphism of complexes is obtained.

We now calculate the Hochschild cohomology groups HHm(An) by Kerσm+1/Imσm. Setting

e1≺e2≺···≺en≺α1≺α2≺···≺αn, and

(b,fmi )≺ (b′,fmi′ ) if b≺ b′,

for any (b,fmi ),(b′,fmi′ )∈B//Fm. We still denote by σm the matrix of σm under the ordered

basis B//Fm. Then

σkn+1 =


(−1)kn+1 1

1 (−1)kn+1

. . .
. . .

1 (−1)kn+1


n×n

,

and σm= 0 if m 6=kn+1. Then, by direct calculation, we get a k-basis of HHm(An) as following.

Proposition 3.1. Let An be the self-injective quadratic monomial algebra. Then

HHm(An)∼=


k

{
n∑
i=1

(ei,f
m
i )

}
, if m=kn is even;

k

{
n∑
i=1

(αi,f
m
i )

}
, if m=kn+1 is odd;

0, otherwise.

§4. Hochschild cohomology ring

In this section, the cup product of the cohomology ring HH∗(An) is described by the parallel

paths, and so that the ring structure of HH∗(An) and HH∗(An)/N are given explicitly.

For any finite-dimensional k-algebra Λ, Siegel and Witherspoon proved that any projective

Λe-resolution X of Λ gives rise to the cup product on HH∗(Λ)=
⊕

m≥0HH
m(Λ) (see [11]).

They showed that there exists a chain map 4 :X→X⊗ΛX lifting the identity, which is unique
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up to homotopy, and the cup product of two elements η in HHm(Λ) and ξ in HHn(Λ) can be

defined by the composition of the maps

X 4−−→X⊗ΛX η⊗ξ−−−−→Λ⊗Λ Λ
ω−−→Λ.

where ω is the natural isomorphism.

Here, we will use the minimal projective bimodule resolution P=(Pm,dm) of An which is

constructed in Section 3, to give the cup product of HH∗(An). First recall that the tensor

complex P⊗An P := (Pm,bm) is given by

Pm :=
⊕

i+j=m

Pi⊗An
Pj ,

and the differential bm :Pm→Pm−1 is given by

bm=

m−1∑
i=0

(
(−1)iid⊗dm−i+di+1⊗ id

)
,

for all m≥1. It is well known that P⊗An P is also a projective bimodule resolution of An∼=
An⊗AnAn Now we define a family of Aen-morphisms {4m :Pm→Pm}m≥0 as follows:

4m (o(fmi )⊗ t(fmi )) =

m∑
s=0

(o(fsi )⊗ t(fsi ))⊗̄
(
o(fm−si+s )⊗ t(fm−si+s )

)
,

where ⊗̄ :=⊗An
.

Lemma 4.1. The morphism 4 := (4m)m≥0 satisfies the following commutative diagram

·· · // Pm
dm //

4m

��

Pm−1
//

4m−1

��

·· · // P1
d1 //

41

��

P0
d0 //

40

��

An // 0

·· · //Pm
bm //Pm−1

// ·· · //P1
b1 //P0

b0 // An // 0

where b0 =ω◦(d0⊗d0), d0 is the multiplication map, ω :An⊗AnAn→An is the natural isomor-

phism.

Proof. Firstly, it is easy to see that d0 = b0 ◦40. Secondly, for n= 1 and each αi, we have

b1 ◦41 (o(αi)⊗ t(αi)) = b1
(
(ei⊗ei)⊗̄(ei⊗ei+1)+(ei⊗ei+1)⊗̄(ei+1⊗ei+1)

)
= (ei⊗ei)⊗̄(αi⊗ei+1)−(ei⊗ei)⊗̄(ei⊗αi)

+(αi⊗ei+1)⊗̄(ei+1⊗ei+1)−(ei⊗αi)⊗̄(ei+1⊗ei+1)

=40 (αi⊗ t(αi)−o(αi)⊗αi)

=40 ◦d1 (o(αi)⊗ t(αi)).

Thus 40 ◦d1 = b1 ◦41.

Finally, let m≥2. For any a∈Fm, 0≤s≤m, we denote by 4m−1 ◦dm (o(a)⊗ t(a))s,

bm ◦4m (o(a)⊗ t(a))s the s-th direct summer of 40 ◦d1 (o(a)⊗ t(a)) and b1 ◦41 (o(a)⊗ t(a))
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respectively, i.e., 40 ◦d1 (o(a)⊗ t(a))s⊆Ps⊗̄Pm−s−1, b1 ◦41 (o(a)⊗ t(a))s⊆Ps⊗̄Pm−s−1. Then,

we have

bm ◦4m (o(fmi )⊗ t(fmi ))s=
(
αi⊗ t(fsi+1)

)
⊗̄
(
o(fm−s−1

i+s+1 )⊗ t(fm−s−1
i+s+1 )

)
+(−1)m (o(fsi )⊗ t(fsi ))⊗̄

(
o(fm−s−1

i+s )⊗αi+m−1

)
=4n−1 ◦dm (o(fmi )⊗ t(fmi ))s ,

Therefore, we obtain the commutative diagram.

Now, for any m≥0 and η :=(a,f)∈Lm=k{B//Fm}, we identify it with its image ϕm(η)

under the isomorphism ϕm :Lm→HomAe
n
(Pm,An) which is given in Section 3. By the morphism

4 := (4m)m≥0, the following theorem will give a description of the cup product using the parallel

paths.

Proposition 4.1. Suppose η := (a,f)∈HHm(An) and ξ := (a′,f ′)∈HH l(An). Then

ηtξ=

{(
aa′,fm+l

i

)
, if f =fmi and f ′=f li+m;

0, otherwise.

Proof. Let f =fmi and f ′=f li′ . Since the cup product of η and ξ is given by the composition

of the maps X 4−−→X⊗ΛX η⊗ξ−−−−→Λ⊗Λ Λ
ω−−→Λ, we have ηtξ= 0 if i′ 6= i+m, and if i′= i+m ,

we have

(ηtξ)
(
o(fm+l

i )⊗ t(fm+l
i )

)
=ω
(m+l∑
s=0

η (o(fsi )⊗ t(fsi ))⊗̄ξ
(
o(fm+l−s

i+s )⊗ t(fm+l−s
i+s )

))
=aa′.

The proof is finished.

Now, using the basis of HHm(An) in the pervious section and the description of the cup

product in Proposition 4.1, we can give the ring structure of HH∗(An).

Theorem 4.1. As graded k-algebras, we have the following isomorphism:

θ : HH∗(An)−→k〈y,u〉/I,

which is given by 1̂ :=
n∑
i=1

(ei,f
0
i ) 7→1, ŷ :=

n∑
i=1

(αi,f
1
i ) 7→y, û :=

n∑
i=1

(ei,f
kn
i ) 7→u, where kn is even,

I is the ideal of k〈y,u〉 generated by y2 and yu−uy, and the degree of y and u is 1 and kn

respectively.

Proof. By using the formula given in Proposition 4.1, we can directly calculate that 1̂ is the

unit under the cup product, ŷt ŷ= 0, ŷt û=
n∑
i=1

(αi,f
kn+1
i ) = ût ŷ. Thus, the correspondence in

the theorem gives an isomorphism between graded algebras.

For any finite-dimensional k-algebra Λ, let N be the ideal of HH∗(Λ) generated by all the

homogeneous nilpotent elements. If HH∗(Λ)/N is a finite-dimensional commutative k-algebra,

then it is used to define the support varieties for Λ-modules [10]. Moreover, Snashall and Solberg

conjectured that HH∗(Λ)/N is finitely generated for any finite-dimensional k-algebra Λ. Here,

using the result in Theorem 4.1, we can give the ring structure of HH∗(An)/N directly.
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Corollary 4.1. For the quotient algebra HH∗(An)/N , we have

HH∗(An)/N ∼=k〈u〉,

where the degree of u is kn and kn is even.

§5. Batalin-Vilkovisky structure on Hochschild cohomology

In this section, we give the Gerstenhaber algebra structure and the Batalin-Vilkovisky

algebra structure on HH∗(An) clearly.

Firstly, we consider the chain mappings between the reduced bar resolution and the minimal

projective bimodule resolution of An. Recall that the algebra An has a reduced bar resolution

B̄= (B̄m, d̄m), where B̄m=An⊗E Ā⊗Em
n ⊗EAn, Ān=An/E, E is the subalgebra of An generated

by {e1,e2,·· · ,en}. On the other hand, we get a minimal projective bimodule resolution P=

(Pm,dm) of An in section 3. By using the method given in [1], we can give two chain mappings

between P and B̄. We define Φ = (Φm)m≥0 from P= (Pm,dm) to B̄= (B̄m, d̄m) by Φm :Pm→ B̄m,

Φm(o(fmi )⊗ t(fmi )) =o(αi)⊗̂αi⊗̂···⊗̂αi+m−1⊗̂t(αi+m−1),

for any 1≤ i≤n, where ⊗̂ :=⊗E ; define Ψ=(Ψm)m≥0 from B̄=(B̄m, d̄m) to P=(Pm,dm) by

Ψm : B̄m→Pm,

Ψm(ei⊗̂αi⊗̂···⊗̂αi+m−1⊗̂ei+m) =o(fmi )⊗ t(fmi ),

for any 1≤ i≤n. Then one can check that Φ = (Φm)m≥0 and Ψ = (Ψm)m≥0 are chain mappings

and Ψm ◦Φm= idPm
.

Since An is a self-injective algebra. If we define an bilinear form on An by

〈a, b〉=

{
1, if ab=αi,1≤ i≤n;

0, overwise,

then the corresponding semisimple Nakayama automorphism ν is given by

a∈B ei αi

ν(a) ei+1 αi+1

where en+1 =e1 and αn+1 =α1. In [8] and [13], the authors proved that the Hochschild

cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-

Vilkovisky algebra in different ways. For the algebra An, we can define an automorphism (̄ )

by

a∈B ei αi

ā αi ei+1

then for any a,b∈B, 〈a, b〉= 1 if b= ā and is 0 otherwise. Thus, we can calculate ∆(α) by

∆(α)(a1⊗̂.. .⊗̂am−1) =
∑
b∈B1

〈 m∑
i=1

µα(ai⊗̂.. .⊗̂am−1⊗̂b̄⊗̂ν(a1)⊗̂.. .⊗̂ν(ai−1)), 1
〉
b,
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for any α∈HHm(An), where B1 ={ei |1≤ i≤n} and µ= (−1)i(m−1).

By the formulas

[f tg, h] = [f, h]tg+(−1)|f |(|h|−1)f t [h, g],

[f, g] =−(−1)(|f |−1)|g|(∆(f tg)−∆(f)tg−(−1)|f |f t∆(g)),

we have

∆(f tgth) = ∆(f tg)th+(−1)|g||h|∆(f th)tg+(−1)|f |+|g|+|h|f t∆(gth)

−∆(f)tgth−(−1)|f ||g|f tht∆(g)−(−1)|f |+|g|+|h|f t∆(h)tg.

This means that to determine operator ∆, we only need to calculate ∆(a) and ∆(atb) for

all the generators a,b of HH∗(An). Moreover, using the comparison morphisms Ψ and Φ, we

compute ∆(f) by formula ∆(f) = ∆(f ◦Ψm)Φm−1, for any f ∈HHm(An).

Theorem 5.1. Let An be the self-injective quadratic monomial algebra. Denote by ∆ the

Batalin-Vilkovisky operator on HH∗∼=k〈y,u〉/I. Then we have

∆(y) = 1, ∆(u) = 0, ∆(yu) = (kn+1)u.

Proof. Firstly, note that

∆(f)(ei⊗ei) = ∆(f ◦Ψ1)◦Φ0(ei⊗ei)

=
〈
f ◦Ψ1(o(αi)⊗̂αi⊗̂t(αi)), 1

〉
ei

=
〈
f(o(αi)⊗ t(αi)), 1

〉
ei,

we get ∆(y)(ei⊗ei) = 0 for i= 1,2,·· · ,n. That is ∆(y) = 1. Secondly, since

∆(f)(o(fkn−1
i )⊗ t(fkn−1

i )) =−
〈
f ◦Ψkn(o(αi)⊗̂αi⊗̂···⊗̂αi+kn−1⊗̂t(αi+kn−1)), 1

〉
ei+kn−1

+
〈
f ◦Ψkn(o(αi)⊗̂αi⊗̂···⊗̂αi+kn−1⊗̂t(αi+kn−1)), 1

〉
ei,

we get ∆(u)(o(fkn−1
i )⊗ t(fkn−1

i ))=0 for i=1,2, ·· · ,n. That is ∆(u)=0. Finally, by direct

calculation,

∆(f)(o(fkni )⊗ t(fkni )) =

kn+1∑
i′=1

〈
f ◦Ψkn+1(o(αi+i′−1)⊗̂αi+i′−1⊗̂···⊗̂αi+kn−1⊗̂

αi⊗̂ν(αi)⊗̂···⊗̂ν(αi+i′−2)⊗̂t(ν(αi+i′−2)), 1
〉
ei

=

kn+1∑
i′=1

〈
f(o(fkn+1

i+i′−1
)⊗ t(fkn+1

i+i′−1
)), 1

〉
ei.

Thus ∆(yu)(o(fkni )⊗ t(fkni )) = (kn+1)ei for i= 1,2, ·· · ,n. Hence ∆(yu) = (kn+1)u.

Using the Batalin-Vilkovisky operator ∆ on HH∗(An), we can determine the Gerstenhaber

bracket [ , ] on HH∗(An) by setting

[α, β] = (−1)|α||β|+|α|+|β|
(

(−1)|α|+1∆(αtβ)+(−1)|α|∆(α)tβ+αt∆(β)
)
,
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for any homogeneous elements α,β∈HH∗(An). Then the Gerstenhaber algebra structure on

HH∗(An) can be induced.

Corollary 5.1. Let An be the self-injective quadratic monomial algebra. Then Gerstenhaber

bracket on the HH∗(An)∼=k〈y,u〉/I is induced by

[y,y] = 0, [u,u] = 0, [y,u] =−knu.

Now we can give a complete description of the Batalin-Vilkovisky algebra structure on

Hochschild cohomology of the self-injective quadratic monomial algebras.

Corollary 5.2. Let An be the self-injective quadratic monomial algebra. The Batalin-Vilkovisky

algebra (HH∗(An), t, [ , ],∆) is isomorphic to k〈y,u〉/I, where the ideal I is generated by

y2 and yu−uy, the Gerstenhaber bracket is induced by [y,y]=0, [u,u]=0, [y,u]=−knu, the

Batalin-Vilkovisky operator is induced by ∆(y) = 1, ∆(u) = 0, ∆(yu) = (kn+1)u, and the degree

of y and u is 1 and kn respectively, kn is even.

[References]

[1] AMES G, CAGLIERO L, TIRAO P. Comparison morphisms and the Hochschild cohomology ring of

truncated quiver algebras[J]. J. Algebra, 2009, 322(5): 1466-1497.

[2] CHEN Y, GUO Y, XU Y. The Gerstenhaber bracket of Hochschild cohomology of triangular quadratic

monomial algebra[J]. Indian J. Pure Appl. Math., 2015, 46(2): 175-190.

[3] CIBILS C. Hochschild cohomology algebra of radical square zero algebra[D]. Algebras and modules II

(Geiranger), 24 (1996), Providence, RI: Amer. Math. Soc., 1998, 93-101.

[4] BARDZELL M J, LOCATELI A C, MARCOS E N. On the hochschild cohomology of truncated cycle

algebras[J]. Comm. Algebra, 2000, 28(3): 1615-1639.

[5] GERSTENHABER M. The cohomology structure of an associative ring[J]. Ann. Math., 1963, 78(2):

267-288.

[6] HOCHSCHILD G. On the cohomology groups of an associative algebra[J]. Ann. Math., 1945, 46(2): 58-67.

[7] LOCATELI A C. Hochschild cohomology of truncated quiver algebras[J]. Comm. Algebra, 1999, 27: 645-664.

[8] LAMBRE TH, ZHOU G, ZIMMERMANN A. The Hochschild cohomology ring of a Frobenius algebra with

semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra[J]. J. Algebra, 2016, 446: 103-131.

[9] LU M, ZHU B. Singularity categories of Gorenstein monomial algebras[J]. J. Pure Appl. Algebra, 2021,

225: 106651.

[10] SNASHALL N, SOLBERG O . Support varieties and Hochschild cohomology rings[J]. Proc. London Math.

Soc., 2004, 88: 705-732.

[11] SIEGEL S F, WITHERSPOON S. The Hochschild cohomology ring of a group algebra[J]. Proc. London

Math. Soc., 1999, 79: 131-157.

[12] TRADLER T. The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner prod-

ucts[J]. Ann. Inst. Fourier, 2008, 58: 2351-2379.

[13] VOLKOV Y. BV-differential on Hochschild cohomology of Frobenius algebras[J]. J. Pure Appl. Algebra,

2016, 220: 3384-3402.

[14] XU Y, HAN Y. Hochschild (co)homology of exterior algebras[J]. Comm. Algebra, 2007, 35: 115-131.

[15] XU Y, ZHANG C. Gerstenhaber brackets for truncted quiver algebras[J]. Sci. Sin. Math., 2011, 41: 17-32.


